The properties of peptidyl diazoethanes and chloroethanes as protease inactivators. 1989

P Wikstrom, and H Kirschke, and S Stone, and E Shaw
Friedrich Miescher-Institut, Basel, Switzerland.

Earlier work has demonstrated the irreversible inactivation of serine and cysteine proteinases by peptides with a C-terminal chloromethyl ketone group. With a C-terminal diazomethyl ketone, on the other hand, peptides become reagents specific for cysteine proteinases. We have now synthesized and examined the properties of reagents with an additional methyl side chain near the reactive grouping with the goal of diminishing side reactions in a cellular environment. Derivatives of neutral amino acids as well as of lysine and arginine have been prepared. The chloroethyl ketones are about 60% less reactive to chemical nucleophiles than the chloromethyl ketones. However, the susceptibilities of the proteases examined varied remarkably. Cathepsins B and L of the papain family of cysteine proteinases were much less susceptible (about 2 orders of magnitude less) to both peptidyl diazoethyl and chloroethyl ketones. In marked contrast, clostripain, a cysteine proteinase of a separate family was decisively more susceptible to chloroethyl ketones. The serine proteinases showed a drop in susceptibility to the chloroethyl ketones generally, and this was similar to the drop in chemical reactivity in proceeding from the chloromethyl to the chloroethyl ketone.

UI MeSH Term Description Entries
D007659 Ketones Organic compounds containing a carbonyl group Ketone
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D002401 Cathepsin B A lysosomal cysteine proteinase with a specificity similar to that of PAPAIN. The enzyme is present in a variety of tissues and is important in many physiological and pathological processes. In pathology, cathepsin B has been found to be involved in DEMYELINATION; EMPHYSEMA; RHEUMATOID ARTHRITIS, and NEOPLASM INVASIVENESS. Cathepsin B-Like Proteinase,Cathepsin B1,Cathepsin B Like Proteinase,Proteinase, Cathepsin B-Like
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D003978 Diazomethane A diazonium compound with the formula CH2N2. Diazirine
D000590 Amino Acid Chloromethyl Ketones Inhibitors of SERINE ENDOPEPTIDASES and sulfhydryl group-containing enzymes. They act as alkylating agents and are known to interfere in the translation process. Peptide Chloromethyl Ketones,Chloromethyl Ketones, Peptide,Ketones, Peptide Chloromethyl
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

P Wikstrom, and H Kirschke, and S Stone, and E Shaw
February 1981, The Journal of biological chemistry,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
January 1986, Biomedica biochimica acta,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
March 2007, Chemical biology & drug design,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
September 1988, Biochemical and biophysical research communications,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
March 2006, Chemistry & biology,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
June 2013, Journal of enzyme inhibition and medicinal chemistry,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
December 2011, Bioorganic & medicinal chemistry,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
January 2016, Protein and peptide letters,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
September 1979, Analytical biochemistry,
P Wikstrom, and H Kirschke, and S Stone, and E Shaw
December 1979, Veterinary and human toxicology,
Copied contents to your clipboard!