Pyruvate carboxylation in the rat heart. Role of biotin-dependent enzymes. 1989

K E Sundqvist, and J K Hiltunen, and I E Hassinen
Department of Medical Biochemistry, University of Oulu, Finland.

Pyruvate carboxylation in the isolated perfused rat heart was studied under steady-state conditions. A biotin deficiency resulting in a 90% decrease in myocardial pyruvate carboxylase left the pyruvate carboxylation rate unchanged. Pyruvate carboxylation in heart muscle must therefore take place by means of an enzyme which does not contain biotin. The kinetic properties and mass-action ratio of the NADP-linked malic enzyme in heart muscle can be taken as circumstantial evidence in favour of the role of malic enzyme in pyruvate carboxylation in myocardium.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011766 Pyruvate Carboxylase A biotin-dependent enzyme belonging to the ligase family that catalyzes the addition of CARBON DIOXIDE to pyruvate. It is occurs in both plants and animals. Deficiency of this enzyme causes severe psychomotor retardation and ACIDOSIS, LACTIC in infants. EC 6.4.1.1. Carboxylase, Pyruvate
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K E Sundqvist, and J K Hiltunen, and I E Hassinen
March 1968, The Journal of vitaminology,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
May 1998, Biochemical Society transactions,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
April 1991, Biochemical Society transactions,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
January 1982, The Biochemical journal,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
January 1971, Advances in enzymology and related areas of molecular biology,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
November 1993, Biochemistry,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
January 1989, Annual review of biochemistry,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
October 1999, Molecular and cellular biochemistry,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
December 2001, Journal of neuroscience research,
K E Sundqvist, and J K Hiltunen, and I E Hassinen
February 1975, Archives of biochemistry and biophysics,
Copied contents to your clipboard!