Hydrogen sulfide in the regulation of insulin secretion and insulin sensitivity: Implications for the pathogenesis and treatment of diabetes mellitus. 2018
Insulin secretion and sensitivity play an essential role in maintaining normal glucose level and their abnormalities result in diabetes mellitus. H2S-synthesizing enzymes, CBS and/or CSE, are expressed in insulin-secreting pancreatic β cells and H2S inhibits insulin secretion by activating ATP-sensitive K+ channels. In addition, H2S has been reported to have either pro- or antiapoptotic effects on β cells. Studies in the animal models suggest that excess of H2S in pancreatic islets may contribute to both type 1 and type 2 diabetes. H2S has also been demonstrated to regulate insulin sensitivity. In the liver, H2S stimulates gluconeogenesis and glycogenolysis and inhibits glucose utilization and glycogen storage. Its effect on insulin-stimulated glucose uptake in the adipose tissue is controversial; both stimulation and inhibition have been reported. H2S may also regulate adipose tissue lipolysis, adipokine production and inflammation; the processes important for local and systemic insulin sensitivity. Little is known about the effect of H2S on skeletal muscle metabolism. High fat diet, obesity and insulin resistance affect CBS/CSE/H2S system in the liver and adipose tissue, although the effect depends on diet composition, animals species and time of high-fat feeding. Most studies indicate that blood H2S concentration decreases in animal models of diabetes and in diabetic humans.