Mutational analysis of the bacteriophage alpha 3 origin of complementary DNA synthesis: in vivo properties of mutants. 1989

K Kodaira, and K Nakano, and A Taketo
Department of Biochemistry I, Fukui Medical School, Japan.

Bacteriophage alpha 3 origin of complementary strand DNA synthesis contains two potential secondary loop structures, I and II, which have been implicated in direct recognition sites for host Escherichia coli dnaG protein. To elucidate the function of the hairpin loops, we have introduced point mutations within the stem of the hairpin II so as to disturb its base-pairings. A mutant, oriAA, which had two point mutations in the region, formed minute plaques on E. coli host cells and its mean burst size at 37 degrees C was about 50, whereas that of wild-type was 250. In addition, the growth of oriAA at 42 degrees C was thermosensitive and the burst size was reduced to 5. From the oriAA, a revertant-like phage oriGA occurred spontaneously with a high-frequency of about 2.10(-2). It retained one point mutation and the plaque size and phage yield were nearly same as those of wild-type. These results are discussed with respect to the role of secondary structure as well as specific nucleotide sequence in the recognition site for the dnaG protein.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

K Kodaira, and K Nakano, and A Taketo
May 1986, Journal of virology,
K Kodaira, and K Nakano, and A Taketo
November 1987, Journal of molecular biology,
K Kodaira, and K Nakano, and A Taketo
February 1997, Research in microbiology,
K Kodaira, and K Nakano, and A Taketo
December 1971, Virology,
K Kodaira, and K Nakano, and A Taketo
June 1970, Genetics,
K Kodaira, and K Nakano, and A Taketo
May 1966, Journal of molecular biology,
K Kodaira, and K Nakano, and A Taketo
June 1978, Journal of biochemistry,
K Kodaira, and K Nakano, and A Taketo
January 1995, Methods in enzymology,
Copied contents to your clipboard!