Gut as a target for cadmium toxicity. 2018

Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460008, Russia. Electronic address: tinkov.a.a@gmail.com.

The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D015386 Hazardous Substances Elements, compounds, mixtures, or solutions that are considered severely harmful to human health and the environment. They include substances that are toxic, corrosive, flammable, or explosive. Biohazard,Hazardous Chemical,Hazardous Chemicals,Hazardous Material,Hazardous Materials,Hazardous Substance,Toxic Environmental Substance,Toxic Substances, Environmental,Biohazards,Chemicals, Hazardous,Environmental Substances, Toxic,Toxic Environmental Substances,Chemical, Hazardous,Environmental Substance, Toxic,Environmental Toxic Substances,Material, Hazardous,Materials, Hazardous,Substance, Hazardous,Substance, Toxic Environmental,Substances, Environmental Toxic,Substances, Hazardous,Substances, Toxic Environmental
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
January 2022, Frontiers in pharmacology,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
September 2006, Life sciences,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
January 1999, Life sciences,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
October 1986, Life sciences,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
March 2021, Acta pharmacologica Sinica,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
August 2008, DNA repair,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
November 1994, Kidney international. Supplement,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
July 2016, Journal of pediatric gastroenterology and nutrition,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
December 2017, Scientific reports,
Alexey A Tinkov, and Viktor A Gritsenko, and Margarita G Skalnaya, and Sergey V Cherkasov, and Jan Aaseth, and Anatoly V Skalny
February 1982, Environmental health perspectives,
Copied contents to your clipboard!