Stoichiometric and electrostatic characterization of calcium binding to native and lipid-substituted adenosinetriphosphatase of sarcoplasmic reticulum. 1985

H Scofano, and H Barrabin, and G Inesi, and J A Cohen

The stoichiometry of calcium binding to specific sites (i.e., those producing enzyme activation) was found to be 8-10 nmol/mg protein in native sarcoplasmic reticulum vesicles, and 13.9-15.4 nmol/mg of ATPase purified by non-ionic detergent solubilization and anion exchange chromatography. Parallel measurements of phosphoenzyme yielded levels of 4.0-4.9 and 6.0-7.7 nmol/mg of protein in the two preparations, respectively, demonstrating that each 115 kDa ATPase chain includes one catalytic site and two calcium binding sites. The apparent association constant, K = (6 +/- 2) X 10(5) M-1, and the binding cooperativity, nH = 1.9, were unchanged when measurements were carried out with native sarcoplasmic reticulum vesicles and when the membrane surface charge was altered by lipid substitution with phosphatidylcholine or phosphatidylserine, at neutral pH in the presence of 10 mM MgCl2 and 80 mM KCl. On the other hand, the apparent association constant was increased in the absence of Mg2+ or, to a lesser extent, in the absence of monovalent cations. It was also observed that the cooperative character of the calcium binding isotherms was reduced in low ionic-strength media. Analysis of the electrostatic effects indicates that the calcium-binding domain is shielded from the membrane phospholipid surface charge by virtue of its location within the ATPase protein. The effects of various electrolytes are attributed to monovalent-cation binding in the calcium-binding domain. The apparent loss of cooperativity of the calcium binding isotherms at low ionic strength is attributed to a progressive displacement of the titration curve which is minimal at low degrees of saturation and becomes larger at higher degrees of saturation. This behavior is described quantitatively by the progressive effect of calcium binding on an electrostatic potential generated by localized protein charge densities within, or near, the calcium-binding domain.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.

Related Publications

H Scofano, and H Barrabin, and G Inesi, and J A Cohen
November 1981, Biochemistry,
H Scofano, and H Barrabin, and G Inesi, and J A Cohen
November 1988, Biochemistry,
H Scofano, and H Barrabin, and G Inesi, and J A Cohen
August 1982, Biochemistry,
H Scofano, and H Barrabin, and G Inesi, and J A Cohen
February 1983, Biochemistry,
H Scofano, and H Barrabin, and G Inesi, and J A Cohen
March 1967, Life sciences,
H Scofano, and H Barrabin, and G Inesi, and J A Cohen
May 1983, Biochemistry,
H Scofano, and H Barrabin, and G Inesi, and J A Cohen
September 1984, Biochemistry,
Copied contents to your clipboard!