CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. 2018

Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.

CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146+) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146-) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146+ and CD146- cells, as well as mixtures composed of 25% CD146+ cells and 75% CD146- cells (CD146+/-). Cell growth assays indicated that CD146+ cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146- cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146+ cells' DNA content in G0/G1 phase were compared with CD146- and non-separated cells. In contrast to CD146- and non-separated cells, prompt mineralization was observed in CD146+ cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146+ cells. CD146+ cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146+ cells, compared with CD146- and CD146+/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146+ cells. CD146+ cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

UI MeSH Term Description Entries
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003782 Dental Pulp A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992) Dental Pulps,Pulp, Dental,Pulps, Dental
D003804 Dentin The hard portion of the tooth surrounding the pulp, covered by enamel on the crown and cementum on the root, which is harder and denser than bone but softer than enamel, and is thus readily abraded when left unprotected. (From Jablonski, Dictionary of Dentistry, 1992) Dentine,Dentines,Dentins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D044968 Regenerative Medicine A field of medicine concerned with developing and using strategies aimed at repair or replacement of damaged, diseased, or metabolically deficient organs, tissues, and cells via TISSUE ENGINEERING; CELL TRANSPLANTATION; and ARTIFICIAL ORGANS and BIOARTIFICIAL ORGANS and tissues. Medicine, Regenerative,Medicines, Regenerative,Regenerative Medicines
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
February 2016, Journal of dental research,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
July 2017, Stem cell research & therapy,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
March 2020, Cells,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
October 2017, Cell proliferation,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
September 2005, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
January 2021, Dental research journal,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
June 2013, Experimental cell research,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
January 2015, Mediators of inflammation,
Mikiko Matsui, and Tomoko Kobayashi, and Takeo W Tsutsui
August 2020, Clinical and experimental dental research,
Copied contents to your clipboard!