Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions. 1985

L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi

Two-dimensional crystalline arrays of Ca2+-ATPase molecules develop in sarcoplasmic reticulum vesicles exposed to Ca2+ or lanthanide ions. The Ca2+- or lanthanide-induced crystals are presumed to represent the E1 conformation of the Ca2+-ATPase, and their crystal form is clearly different from the earlier described E2 crystals induced by Na3VO4 in the presence of ethylene glycol bis(beta aminoethyl ether)-N,N,N',N'-tetraacetic acid (Taylor, K. A., Dux, L., and Martonosi, A. (1984) J. Mol. Biol. 174, 193-204). Analysis of the crystalline arrays by negative staining or freeze-fracture electron microscopy reveals obliquely oriented rows of particles corresponding to individual Ca2+-ATPase molecules. Computer analysis of the negatively stained lanthanide-induced crystalline Ca2+-ATPase arrays shows that the molecules are arranged in a P1 lattice. The pear-shaped profiles of Ca2+-ATPase molecules seen in projection in the density maps are similar to those seen in vanadate-induced crystals. The space group and unit cell dimensions of the E1 crystals are consistent with Ca2+-ATPase monomers as structural units, while the vanadate-induced E2 crystals form by lateral aggregation of chains of Ca2+-ATPase dimers. The transition between the E1 and E2 conformations may involve a shift in the monomer-oligomer equilibrium of the Ca2+-ATPase. The formation of E1 crystals by PrCl3 is promoted by inside negative membrane potential, presumably through stabilization of the E1 conformation of the enzyme. Cleavage of the Ca2+-ATPase by trypsin into two major fragments (A and B) did not interfere with the Ca2+- or the Pr3+-induced crystallization.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008674 Metals, Rare Earth A group of elements that include SCANDIUM; YTTRIUM; and the LANTHANOID SERIES ELEMENTS. Historically, the rare earth metals got their name from the fact that they were never found in their pure elemental form, but as an oxide. In addition, they were very difficult to purify. They are not truly rare and comprise about 25% of the metals in the earth's crust. Rare Earth Metal,Rare Earth Metals,Earth Metal, Rare,Earth Metals, Rare,Metal, Rare Earth
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002857 Chromium A trace element that plays a role in glucose metabolism. It has the atomic symbol Cr, atomic number 24, and atomic weight 52. According to the Fourth Annual Report on Carcinogens (NTP85-002,1985), chromium and some of its compounds have been listed as known carcinogens.
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline

Related Publications

L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
August 1990, The Journal of biological chemistry,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
May 1987, The Journal of biological chemistry,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
July 1985, Bioscience reports,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
April 1988, The Journal of biological chemistry,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
June 2009, Biochimica et biophysica acta,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
February 1982, Molecular and cellular biochemistry,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
January 1997, Biochimica et biophysica acta,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
January 1990, FEBS letters,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
November 1987, FEBS letters,
L Dux, and K A Taylor, and H P Ting-Beall, and A Martonosi
February 1986, The Journal of biological chemistry,
Copied contents to your clipboard!