The roles of the hepatocellular redox state and the hepatic acetaldehyde concentration in determining the ethanol elimination rate in fasted rats. 1985

P R Ryle, and J Chakraborty, and A D Thomson

Ethanol administration (2 g/kg i.p.) to fasted male Wistar rats caused, on average, a 64% decrease in the cytosolic free NAD+:NADH ratio and a 41% decrease in the mitochondrial free NAD+:NADH ratio measured 90 min after ethanol was injected. Treatment of animals with either Naloxone (2 mg/kg i.p.) 1 hr after ethanol or 3-palmitoyl-(+)-catechin (100 mg/kg p.o. 1 hr before ethanol) prevented these ethanol induced redox state changes, without affecting the ethanol elimination rate or the hepatic acetaldehyde concentration measured at 90 min after ethanol administration. The thiol compounds cysteine and malotilate (diisopropyl-1,3-dithiol-2-ylidene malonic acid) significantly lowered the hepatic acetaldehyde concentrations measured at 0.75, 1.5 and 6.0 hr after ethanol, and caused a 29% and 12% increase respectively in the ethanol elimination rate, without affecting the ethanol induced alterations in the NAD+:NADH ratio. Pretreatment of animals with the aldehyde dehydrogenase inhibitor, cyanamide (1 mg/kg or 15 mg/kg p.o. one hour before ethanol), caused increases of up to 23-fold in the hepatic acetaldehyde level, without influencing the cytosolic NAD+:NADH ratio in ethanol dosed rats, while significantly reducing the ethanol elimination rate by up to 44%, compared with controls. These results suggest that ethanol oxidation by cytosolic alcohol dehydrogenase may be regulated in part by the hepatic acetaldehyde concentration achieved during ethanol metabolism rather than NADH reoxidation, either to supply NAD for the dehydrogenase, or to reduce inhibition of the enzyme by NADH, being a rate-limiting factor in ethanol metabolism in fasted rats.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002392 Catechin An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechinic Acid,Catechuic Acid,(+)-Catechin,(+)-Cyanidanol,(+)-Cyanidanol-3,(-)-Epicatechin,(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol,2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-,3,3',4',5,7-Flavanpentol,Catergen,Cianidanol,Cyanidanol-3,Epicatechin,KB-53,Z 7300,Zyma,Cyanidanol 3,KB 53,KB53

Related Publications

P R Ryle, and J Chakraborty, and A D Thomson
September 2003, Alcoholism, clinical and experimental research,
P R Ryle, and J Chakraborty, and A D Thomson
August 1984, Biochemical pharmacology,
P R Ryle, and J Chakraborty, and A D Thomson
January 1980, Advances in experimental medicine and biology,
P R Ryle, and J Chakraborty, and A D Thomson
April 1974, FEBS letters,
P R Ryle, and J Chakraborty, and A D Thomson
January 1979, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry,
P R Ryle, and J Chakraborty, and A D Thomson
March 1992, Journal of forensic sciences,
P R Ryle, and J Chakraborty, and A D Thomson
November 2012, Xenobiotica; the fate of foreign compounds in biological systems,
P R Ryle, and J Chakraborty, and A D Thomson
January 1974, Lipids,
Copied contents to your clipboard!