Factors affecting cure of visible light activated composites. 1985

J A Yearn

Since visible light activated composites first appeared in 1978 they have become internationally popular for the aesthetic restoration of anterior teeth. With an ever increasing number of composite formulations and curing lights available and as yet no widely recognized standard for measuring depth of cure, it is difficult to interpret claims being made by manufacturers. A laboratory technique using incremental measurement of surface hardness has been shown to provide a convenient means of assessing cure throughout the depth of a composite sample, which relates to the clinical situation. Using this method it is possible to demonstrate that physical and chemical formulation factors; the nature of the light source; and the control exercised by the practitioner, are all important in determining the quality of cure achieved and hence likely long term performance of the restoration. Light cured composites are now being more widely used in the restoration of occlusal cavities in posterior teeth, where the technique offers advantages of control, handleability and a lack of porosity unattainable in a chemically cured system. In large Class II cavities depths can exceed 7 mm, and in an application where performance is critical it is essential that a satisfactory level of cure is achieved. To obtain this, even with exposure times significantly longer than those currently being recommended, it is advisable to employ a layering technique for any cavity greater than 3 or 4 mm in depth.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D011109 Polymethacrylic Acids Poly-2-methylpropenoic acids. Used in the manufacture of methacrylate resins and plastics in the form of pellets and granules, as absorbent for biological materials and as filters; also as biological membranes and as hydrogens. Synonyms: methylacrylate polymer; poly(methylacrylate); acrylic acid methyl ester polymer. Methacrylic Acid Polymers,Acid Polymers, Methacrylic,Acids, Polymethacrylic,Polymers, Methacrylic Acid
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D003188 Composite Resins Synthetic resins, containing an inert filler, that are widely used in dentistry. Composite Resin,Resin, Composite,Resins, Composite
D006244 Hardness The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property. Hardnesses
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017438 Bisphenol A-Glycidyl Methacrylate The reaction product of bisphenol A and glycidyl methacrylate that undergoes polymerization when exposed to ultraviolet light or mixed with a catalyst. It is used as a bond implant material and as the resin component of dental sealants and composite restorative materials. Bis-GMA,Bis-GMA Polymer,2-Propenoic acid, 2-methyl-, (1-methylethylidene)bis(4,1-phenyleneoxy(2-hydroxy-3,1-propanediyl)) ester, homopolymer,Adaptic,Bis(Phenol A-Glycidyl Methacrylate),Bis(Phenol A-Glycidyl Methacrylate), Homopolymer,Bis(Phenol A-Glycydyl Methacrylate),Bis-GMA Resin,Bisphenol A-Glycidyl Methacrylate Homopolymer,Bisphenol A-Glycidyl Methacrylate Polymer,Concise Composite Resin,Concise Enamel Bond,Concise Enamel Bond System,Concise Resin,Concise White Sealant,Conclude Composite Resin,Conclude Resin,Delton,Epoxylite-9075,Kerr Pit and Fissure Sealant,Kerr Sealer,Nuva-Seal,Panavia Opaque,Poly(Bis-GMA),Retroplast,Silux,Bis GMA,Bis GMA Polymer,Bis GMA Resin,Bis-GMA Polymers,Bis-GMA Resins,Bisphenol A Glycidyl Methacrylate,Bisphenol A Glycidyl Methacrylate Homopolymer,Bisphenol A Glycidyl Methacrylate Polymer,Bond, Concise Enamel,Composite Resin, Concise,Composite Resin, Conclude,Composite Resins, Concise,Concise Composite Resins,Concise Resins,Enamel Bond, Concise,Epoxylite 9075,Epoxylite9075,Methacrylate, Bisphenol A-Glycidyl,Nuva Seal,NuvaSeal,Opaque, Panavia,Polymer, Bis-GMA,Polymers, Bis-GMA,Resin, Bis-GMA,Resin, Concise,Resin, Concise Composite,Resin, Conclude,Resin, Conclude Composite,Resins, Bis-GMA,Resins, Concise,Resins, Concise Composite
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

J A Yearn
April 1993, American journal of dentistry,
J A Yearn
November 1984, Shika zairyo, kikai = Journal of the Japanese Society for Dental Materials and Devices,
J A Yearn
January 1992, Journal of oral rehabilitation,
J A Yearn
May 1983, Journal of the American Dental Association (1939),
J A Yearn
February 1984, Acta odontologica Scandinavica,
J A Yearn
May 1999, International endodontic journal,
J A Yearn
June 1985, Journal - Connecticut State Dental Association,
Copied contents to your clipboard!