Knockdown of TRIM37 suppresses the proliferation, migration and invasion of glioma cells through the inactivation of PI3K/Akt signaling pathway. 2018

Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China.

Tripartite motif 37 (TRIM37), a member of the TRIM protein family, was involved in the tumorigenesis of several types of cancer. However, the expression pattern and role of TRIM37 in glioma remain unclear. Therefore, the aim of the present study was to investigate the role of TRIM37 in glioma, and to determine the molecular mechanisms. Our results demonstrated that TRIM37 was highly expressed in human glioma tissues and cell liens. Additionally, knockdown of TRIM37 dramatically inhibited the proliferation, migration/invasion, and the epithelial-mesenchymal transition (EMT) phenotype in glioma cells. Furthermore, knockdown of TRIM37 significantly reduced the levels of phosphorylated PI3K and Akt in U87MG cells, and an activator of PI3K/Akt signaling (SC79) partly reversed the inhibitory effects of si-TRIM37 on glioma cell proliferation and migration. Taken together, our results demonstrated that TRIM37 functions as an oncogene in the development and progression of glioma. TRIM37 knockdown inhibited the proliferation and invasion of human glioma cells at least in part through the inactivation of PI3K/Akt signaling pathway.

UI MeSH Term Description Entries
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000070584 Tripartite Motif Proteins A protein family defined by the presence of three ZINC FINGER domains, one of which is a RING FINGER DOMAIN, a coiled-coil region, and a highly variable C-terminal region. They function in many cellular processes including APOPTOSIS and CELL CYCLE regulation. RBCC Protein,TRIM Protein,Tripartite Motif Protein,RBCC Protein Family,RBCC Proteins,TRIM Protein Family,TRIM Proteins,Family, RBCC Protein,Family, TRIM Protein,Motif Protein, Tripartite,Motif Proteins, Tripartite,Protein Family, RBCC,Protein Family, TRIM,Protein, RBCC,Protein, TRIM,Protein, Tripartite Motif,Proteins, RBCC,Proteins, TRIM,Proteins, Tripartite Motif
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D044767 Ubiquitin-Protein Ligases A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes. Ubiquitin-Protein Ligase,E3 Ligase,E3 Ubiquitin Ligase,Ubiquitin Ligase E3,Ubiquitin-Protein Ligase E3,Ligase E3, Ubiquitin,Ligase E3, Ubiquitin-Protein,Ligase, E3,Ligase, E3 Ubiquitin,Ligase, Ubiquitin-Protein,Ligases, Ubiquitin-Protein,Ubiquitin Ligase, E3,Ubiquitin Protein Ligase,Ubiquitin Protein Ligase E3,Ubiquitin Protein Ligases
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
September 2019, Neoplasma,
Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
September 2016, Annals of clinical and laboratory science,
Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
December 2018, Journal of biochemical and molecular toxicology,
Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
April 2020, European review for medical and pharmacological sciences,
Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
January 2020, BioMed research international,
Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
December 2020, Journal of biochemical and molecular toxicology,
Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
December 2019, Pathology, research and practice,
Shi-Lei Tang, and Yuan-Lin Gao, and Hu Wen-Zhong
October 2016, Molecular medicine reports,
Copied contents to your clipboard!