Phosphatase activities in human glioma cells as revealed by light and electron microscopy--a preliminary study. 1985

T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano

Alkaline phosphatase (ALPase) and Mg2+-activated ATPase (Mg2+-ATPase) activities were demonstrated in human brain tumors by light and electron microscopy. Four cases of glioma, i.e., two cases of astrocytoma, grade II, and two cases of glioblastoma, were used as materials. At the light microscopic level, Mg2+-ATPase activity was observed in the capillary wall and glial cells of both astrocytoma and glioblastoma. ALPase activity was restricted to the capillary wall. Its activity was stronger in glioblastoma than in astrocytoma. By electron microscopy, in astrocytoma, reaction product representing Mg2+-ATPase activity was distributed in the plasma membranes of endothelial cells and pericytes. Activity was primarily localized at the abluminal surface of endothelial cells and the surface of pericytes facing endothelium. The plasma membrane of glial cells was also positive. ALPase activity revealed essentially the same distribution pattern in blood vessels as above. In glioblastoma, on the other hand, activities of both phosphatases were markedly positive on the luminal surface of the plasma membrane of endothelial cells. They were much stronger than those along the abluminal endothelial surface. Phosphatase activities in brain tumor appear to change in localization pattern in association with glioma malignancy. This might reflect a functional aspect of changes in blood-brain barrier in glioma.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D001254 Astrocytoma Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082) Astrocytoma, Subependymal Giant Cell,Glioma, Astrocytic,Oligoastrocytoma, Mixed,Pleomorphic Xanthoastrocytomas,Anaplastic Astrocytoma,Astrocytoma, Grade I,Astrocytoma, Grade II,Astrocytoma, Grade III,Astrocytoma, Protoplasmic,Astroglioma,Cerebral Astrocytoma,Childhood Cerebral Astrocytoma,Fibrillary Astrocytoma,Gemistocytic Astrocytoma,Intracranial Astrocytoma,Juvenile Pilocytic Astrocytoma,Pilocytic Astrocytoma,Subependymal Giant Cell Astrocytoma,Anaplastic Astrocytomas,Astrocytic Glioma,Astrocytic Gliomas,Astrocytoma, Anaplastic,Astrocytoma, Cerebral,Astrocytoma, Childhood Cerebral,Astrocytoma, Fibrillary,Astrocytoma, Gemistocytic,Astrocytoma, Intracranial,Astrocytoma, Juvenile Pilocytic,Astrocytoma, Pilocytic,Astrocytomas,Astrocytomas, Grade III,Astrogliomas,Cerebral Astrocytoma, Childhood,Cerebral Astrocytomas,Childhood Cerebral Astrocytomas,Fibrillary Astrocytomas,Gemistocytic Astrocytomas,Gliomas, Astrocytic,Grade I Astrocytoma,Grade I Astrocytomas,Grade II Astrocytoma,Grade II Astrocytomas,Grade III Astrocytoma,Grade III Astrocytomas,Intracranial Astrocytomas,Juvenile Pilocytic Astrocytomas,Mixed Oligoastrocytoma,Mixed Oligoastrocytomas,Pilocytic Astrocytoma, Juvenile,Pilocytic Astrocytomas,Pleomorphic Xanthoastrocytoma,Protoplasmic Astrocytoma,Protoplasmic Astrocytomas,Xanthoastrocytoma, Pleomorphic
D017301 Ca(2+) Mg(2+)-ATPase An enzyme that catalyzes the hydrolysis of ATP and is activated by millimolar concentrations of either Ca(2+) or Mg(2+). Unlike CA(2+)-TRANSPORTING ATPASE it does not require the second divalent cation for its activity, and is not sensitive to orthovanadate. (Prog Biophys Mol Biol 1988;52(1):1). A subgroup of EC 3.6.1.3. ATPase, Calcium Magnesium,ATPase, Magnesium,Adenosinetriphosphatase, Calcium, Magnesium,Adenosinetriphosphatase, Magnesium,Calcium Magnesium ATPase,Calcium Magnesium Adenosinetriphosphatase,Magnesium ATPase,Magnesium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium, Magnesium,Adenosine Triphosphatase, Magnesium,Ca Mg-ATPase,Ca2+-Mg2+ ATPase,Calcium Magnesium Adenosine Triphosphatase,Mg2+-ATPase,Mg2+-Dependent ATPase,ATPase, Ca2+-Mg2+,ATPase, Mg2+-Dependent,Adenosinetriphosphatase, Calcium Magnesium,Ca Mg ATPase,Ca2+ Mg2+ ATPase,Magnesium Adenosine Triphosphatase,Mg2+ ATPase,Mg2+ Dependent ATPase

Related Publications

T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
June 1987, No to shinkei = Brain and nerve,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
February 1966, Laboratory investigation; a journal of technical methods and pathology,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
August 1966, Gan,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
January 2017, Biomedical research (Tokyo, Japan),
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
April 1952, Biochimica et biophysica acta,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
January 1976, American journal of hematology,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
October 1961, The Journal of biophysical and biochemical cytology,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
October 1976, Cancer research,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
November 1958, The Journal of biophysical and biochemical cytology,
T Maeda, and F Nishiyama, and M Ogashiwa, and K Takeuchi, and H Hirano
September 1976, Cell and tissue research,
Copied contents to your clipboard!