Amphetamine-Induced Striatal Dopamine Release Measured With an Agonist Radiotracer in Schizophrenia. 2018

W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
Department of Psychiatry, NYU Langone Medical Center, New York, New York. Electronic address: william.frankle@nyumc.org.

Receptor imaging studies have reported increased amphetamine-induced dopamine release in subjects with schizophrenia (SCH) relative to healthy control subjects (HCs). A limitation of these studies, performed with D2/3 antagonist radiotracers, is the failure to provide information about D2/3 receptors configured in a state of high affinity for the agonists (i.e., D2/3 receptors coupled to G proteins [D2/3 HIGH]). The endogenous agonist dopamine binds with preference to D2/3 HIGH receptors relative to D2/3 LOW receptors, making it critical to understand the status of D2/3 HIGH receptors in SCH. D2/3 agonist positron emission tomography radiotracer [11C]N-propyl-norapomorphine ([11C]NPA) binding potential (BPND) was measured in 14 off-medication subjects with SCH and 14 matched HCs at baseline and after the administration of 0.5 mg kg-1 oral D-amphetamine. The amphetamine-induced change in BPND (ΔBPND) was calculated as the difference between BPND in the postamphetamine condition and BPND in the baseline condition and was expressed as a percentage of BPND at baseline. A trend-level increase was observed in comparing baseline [11C]NPA BPND (repeated-measures analysis of variance, F1,26 = 3.34, p = .08) between the SCH and HC groups. Amphetamine administration significantly decreased BPND in all striatal regions across all subjects in both groups. No differences were observed in [11C]NPA ΔBPND (repeated-measures analysis of variance, F1,26 = 1.9, p = .18) between HCs and subjects with SCH. Amphetamine significantly increased positive symptoms in subjects with SCH (19.5 ± 5.3 vs. 23.7 ± 4.1, paired t test, p < .0001); however, no correlations were noted with [11C]NPA BPND or ΔBPND. This study provides in vivo indication of a role for postsynaptic factors in amphetamine-induced psychosis in SCH.

UI MeSH Term Description Entries
D008297 Male Males
D011849 Radioactive Tracers Radioactive substances added in minute amounts to the reacting elements or compounds in a chemical process and traced through the process by appropriate detection methods, e.g., Geiger counter. Compounds containing tracers are often said to be tagged or labeled. (Hawley's Condensed Chemical Dictionary, 12th ed) Radioactive Tracer,Radionuclide Tracer,Radionuclide Tracers,Tracer, Radioactive,Tracer, Radionuclide,Tracers, Radioactive,Tracers, Radionuclide
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D001058 Apomorphine A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use. Apokinon,Apomorphin-Teclapharm,Apomorphine Chloride,Apomorphine Hydrochloride,Apomorphine Hydrochloride Anhydrous,Apomorphine Hydrochloride, Anhydrous,Apomorphine Hydrochloride, Hemihydrate,Britaject,Apomorphin Teclapharm

Related Publications

W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
May 1990, Journal of neurochemistry,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
October 2000, Biological psychiatry,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
March 2005, Current psychiatry reports,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
September 2020, Psychopharmacology,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
November 2000, Naunyn-Schmiedeberg's archives of pharmacology,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
May 2007, NeuroImage,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
September 1999, Synapse (New York, N.Y.),
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
June 2015, The Analyst,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
August 2013, Molecular psychiatry,
W Gordon Frankle, and Jennifer Paris, and Michael Himes, and N Scott Mason, and Chester A Mathis, and Rajesh Narendran
November 1989, Behavioural brain research,
Copied contents to your clipboard!