Targeting bladder cancer using activated T cells armed with bispecific antibodies. 2018

Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China.

In the present study, we aimed to investigate whether EGFR or HER2 may serve as a target for T cell-mediated immunotherapy against human bladder cancer. Expression of EGFR and HER2 was detected on the surface of bladder cancer cells, including Pumc-91 and T24 cells, and their chemotherapeutic drug-resistant counterparts. Activated T cells (ATCs) were generated from healthy PBMCs that were stimulated by the combination of anti-CD3 monoclonal antibody and anti‑CD28 monoclonal antibody in the presence of interleukin-2 for 14 days. The ATCs were then armed with chemically hetero-conjugated anti-CD3xanti-EGFR (EGFRBi-Ab) or anti-CD3xanti-HER2 (HER2Bi-Ab). The specific cytolytic activity of ATCs armed with EGFRBi-Ab or HER2Bi-Ab against human bladder cancer cells was evaluated by lactate dehydrogenase activity assays in vitro. In contrast to unarmed ATCs, EGFRBi-Ab-armed ATCs and HER2Bi-Ab-armed ATCs showed increased cytotoxic activity against bladder cancer cells. Moreover, Bi-Ab-armed ATCs expressed higher levels of activating marker CD69 and secreted more IFN-γ, TNF-α and IL-2 than did unarmed ATCs. EGFRBi-Ab- or HER2Bi-Ab-armed ATCs may provide a promising immunotherapy for bladder cancer.

UI MeSH Term Description Entries
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D001749 Urinary Bladder Neoplasms Tumors or cancer of the URINARY BLADDER. Bladder Cancer,Bladder Neoplasms,Cancer of Bladder,Bladder Tumors,Cancer of the Bladder,Malignant Tumor of Urinary Bladder,Neoplasms, Bladder,Urinary Bladder Cancer,Bladder Cancers,Bladder Neoplasm,Bladder Tumor,Cancer, Bladder,Cancer, Urinary Bladder,Neoplasm, Bladder,Neoplasm, Urinary Bladder,Tumor, Bladder,Tumors, Bladder,Urinary Bladder Neoplasm
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
February 2013, BMC cancer,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
November 2015, Current opinion in hematology,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
December 2011, BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
June 2013, Current opinion in chemical biology,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
July 2012, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
August 2002, Biochemical Society transactions,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
April 1998, Journal of controlled release : official journal of the Controlled Release Society,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
January 2018, Methods in molecular biology (Clifton, N.J.),
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
June 2021, Oncoimmunology,
Juan Ma, and Jing Ge, and Xin Xue, and Weigang Xiu, and Pan Ma, and Ximing Sun, and Man Zhang
March 2021, Science (New York, N.Y.),
Copied contents to your clipboard!