CRISPR/Cas9-Mediated Genome Editing in Epstein-Barr Virus-Transformed Lymphoblastoid B-Cell Lines. 2018

Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts.

Epstein-Barr virus (EBV) efficiently transforms primary human B cells into immortalized lymphoblastoid cell lines (LCLs), which are extensively used in human genetic, immunological and virological studies. LCLs provide unlimited sources of DNA for genetic investigation, but can be difficult to manipulate, for instance because low retroviral or lentiviral transduction frequencies hinder experiments that require co-expression of multiple components. This unit details Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 engineering for robust LCL genome editing. We describe the generation and delivery of single-guide RNAs (sgRNAs), or dual-targeting sgRNAs, via lentiviral transduction of LCLs that stably express Cas9 protein. CRISPR/Cas9 editing allows LCL loss-of-function studies, including knock-out of protein-coding genes or deletion of DNA regulatory elements, and can be adapted for large-scale screening approaches. Low transfection efficiencies are a second barrier to performing CRISPR editing in LCLs, which are not typically lipid-transfectable. To circumvent this barrier, we provide an optimized protocol for LCL nucleofection of Cas9/sgRNA ribonucleoprotein complexes (RNPs) as an alternative route to achieve genome editing in LCLs. These editing approaches can also be employed in other B-cell lines, including Burkitt lymphoma and diffuse large B-cell lymphoma cells, and are highly reproducible. © 2018 by John Wiley & Sons, Inc.

UI MeSH Term Description Entries
D002051 Burkitt Lymphoma A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative. African Lymphoma,Burkitt Cell Leukemia,Burkitt Tumor,Lymphoma, Burkitt,Burkitt Leukemia,Burkitt's Leukemia,Burkitt's Lymphoma,Burkitt's Tumor,Leukemia, Lymphoblastic, Burkitt-Type,Leukemia, Lymphocytic, L3,Lymphocytic Leukemia, L3,Burkitts Leukemia,Burkitts Lymphoma,Burkitts Tumor,L3 Lymphocytic Leukemia,L3 Lymphocytic Leukemias,Leukemia, Burkitt,Leukemia, Burkitt Cell,Leukemia, Burkitt's,Leukemia, L3 Lymphocytic,Lymphoma, African,Lymphoma, Burkitt's,Tumor, Burkitt,Tumor, Burkitt's
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072669 Gene Editing Genetic engineering or molecular biology techniques that involve DNA REPAIR mechanisms for incorporating site-specific modifications into a cell's genome. Base Editing,Genome Editing,Editing, Base,Editing, Gene,Editing, Genome
D000094704 RNA, Guide, CRISPR-Cas Systems A component of CRISPR-Cas SYSTEMS. Cas endodeoxyribonucleases assemble with a guide RNA complex, a hybrid of CRISPR RNA (crRNA) and transactivating crRNA (tracrRNA) molecules, to form an active complex that cleaves DNA. crRNA and tracrRNA can be synthetically fused into a single RNA molecule, namely single guide RNA. Synthetic sgRNA is used with CRISPR-Cas SYSTEMS for targeted GENE EDITING. CRISPR Guide RNA,CRISPR-Cas Systems sgRNA (Single Guide RNA),Guide RNA (CRISPR-Cas Systems),Guide RNA, CRISPR-Cas Systems,RNA, CRISPR Guide,RNA, Guide (CRISPR-Cas Systems),RNA, Single Guide,RNA, Single-Guide,Single Guide RNA,Single-Guide RNA,Transactivating crRNA,crRNA,crRNA, Transactivating,sgRNA (CRISPR-Cas Systems),sgRNA (Single-Guide RNA),tracrRNA,Guide RNA, CRISPR,Guide RNA, CRISPR Cas Systems,Guide RNA, Single
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic
D064112 Clustered Regularly Interspaced Short Palindromic Repeats Repetitive nucleic acid sequences that are principal components of the archaeal and bacterial CRISPR-CAS SYSTEMS, which function as adaptive antiviral defense systems. CRISPR Arrays,CRISPR Clusters,CRISPR Elements,CRISPR Loci,CRISPR Locus,CRISPR Sequences,CRISPR Spacer Sequences,CRISPR Spacers,CRISPR-Cas Loci,CRISPRs,Clustered Regularly Interspaced Short Palindromic Repeat,Array, CRISPR,Arrays, CRISPR,CRISPR,CRISPR Array,CRISPR Cas Loci,CRISPR Cluster,CRISPR Element,CRISPR Sequence,CRISPR Spacer,CRISPR Spacer Sequence,CRISPR-Cas Locus,Cluster, CRISPR,Clusters, CRISPR,Element, CRISPR,Elements, CRISPR,Loci, CRISPR,Loci, CRISPR-Cas,Locus, CRISPR,Locus, CRISPR-Cas,Sequence, CRISPR,Sequence, CRISPR Spacer,Sequences, CRISPR,Sequences, CRISPR Spacer,Spacer Sequence, CRISPR,Spacer Sequences, CRISPR,Spacer, CRISPR,Spacers, CRISPR
D064113 CRISPR-Cas Systems Adaptive antiviral defense mechanisms, in archaea and bacteria, based on DNA repeat arrays called CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS (CRISPR elements) that function in conjunction with CRISPR-ASSOCIATED PROTEINS (Cas proteins). Several types have been distinguished, including Type I, Type II, and Type III, based on signature motifs of CRISPR-ASSOCIATED PROTEINS. CRISPR Cas Systems,CRISPR-Cas System,System, CRISPR-Cas,Systems, CRISPR-Cas

Related Publications

Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
March 2015, The Journal of general virology,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
November 2020, Biomedical reports,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
November 2011, Journal of visualized experiments : JoVE,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
May 2017, Cell host & microbe,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
January 2021, Biomedical reports,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
November 1999, Journal of virology,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
March 1978, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
September 1985, Tissue antigens,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
November 2003, DNA and cell biology,
Sizun Jiang, and Liang Wei Wang, and Michael J Walsh, and Stephen J Trudeau, and Catherine Gerdt, and Bo Zhao, and Benjamin E Gewurz
January 1985, Chromosoma,
Copied contents to your clipboard!