Patra et al. [Int. J. Bifurcat. Chaos 26, 1650089 (2016)IJBEE40218-127410.1142/S0218127416500899] recently showed that the time-averaged rates of entropy production and phase-space volume contraction are equal for several different molecular dynamics methods used to simulate nonequilibrium steady states in Hamiltonian systems with thermostated temperature gradients. This equality is a plausible statistical analog of the second law of thermodynamics. Here we show that those two rates are identically equal in a wide class of methods in which the thermostat variables z are determined by ordinary differential equations of motion (i.e., methods of the Nosé-Hoover or integral feedback control type). This class of methods is defined by three relatively innocuous restrictions which are typically satisfied in methods of this type.
| UI | MeSH Term | Description | Entries |
|---|