Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. 2018

Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester. milka.koupenova@umassmed.edu.

Platelets, non-nucleated blood components first described over 130 years ago, are recognized as the primary cell regulating hemostasis and thrombosis. The vascular importance of platelets has been attributed to their essential role in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism. Increasing knowledge on the platelets' role in the vasculature has led to many advances in understanding not only how platelets interact with the vessel wall but also how they convey changes in the environment to other circulating cells. In addition to their well-described hemostatic function, platelets are active participants in the immune response to microbial organisms and foreign substances. Although incompletely understood, the immune role of platelets is a delicate balance between its pathogenic response and its regulation of thrombotic and hemostatic functions. Platelets mediate complex vascular homeostasis via specific receptors and granule release, RNA transfer, and mitochondrial secretion that subsequently regulates hemostasis and thrombosis, infection, and innate and adaptive immunity.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D010975 Platelet Aggregation Inhibitors Drugs or agents which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system. Antiaggregants, Platelet,Antiplatelet Agent,Antiplatelet Agents,Antiplatelet Drug,Blood Platelet Aggregation Inhibitor,Blood Platelet Antagonist,Blood Platelet Antiaggregant,PAR-1 Antagonists,Platelet Aggregation Inhibitor,Platelet Antagonist,Platelet Antagonists,Platelet Antiaggregant,Platelet Antiaggregants,Platelet Inhibitor,Protease-Activated Receptor-1 Antagonists,Antiplatelet Drugs,Blood Platelet Aggregation Inhibitors,Blood Platelet Antagonists,Blood Platelet Antiaggregants,Platelet Inhibitors,Agent, Antiplatelet,Aggregation Inhibitor, Platelet,Antagonist, Blood Platelet,Antagonist, Platelet,Antiaggregant, Blood Platelet,Antiaggregant, Platelet,Drug, Antiplatelet,Inhibitor, Platelet,Inhibitor, Platelet Aggregation,PAR 1 Antagonists,Platelet Antagonist, Blood,Platelet Antiaggregant, Blood,Protease Activated Receptor 1 Antagonists
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D006487 Hemostasis The process which spontaneously arrests the flow of BLOOD from vessels carrying blood under pressure. It is accomplished by contraction of the vessels, adhesion and aggregation of formed blood elements (eg. ERYTHROCYTE AGGREGATION), and the process of BLOOD COAGULATION. Hemostases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013927 Thrombosis Formation and development of a thrombus or blood clot in BLOOD VESSELS. Atherothrombosis,Thrombus,Blood Clot,Blood Clots,Thromboses
D056704 Adaptive Immunity Protection from an infectious disease agent that is mediated by B- and T- LYMPHOCYTES following exposure to specific antigen, and characterized by IMMUNOLOGIC MEMORY. It can result from either previous infection with that agent or vaccination (IMMUNITY, ACTIVE), or transfer of antibody or lymphocytes from an immune donor (IMMUNIZATION, PASSIVE). Acquired Immunity,Hybrid Immunity,Adaptive Immune Response,Adoptive Immunity,Immunity, Adaptive,Hybrid Immunities,Immune Response, Adaptive,Immunity, Acquired,Immunity, Adoptive,Immunity, Hybrid,Response, Adaptive Immune

Related Publications

Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
February 2007, Hematology/oncology clinics of North America,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
January 2013, Platelets,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
January 2020, Frontiers in immunology,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
March 2011, Thrombosis research,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
January 2016, Future microbiology,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
February 1976, Agents and actions,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
May 2011, Thrombosis research,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
April 2021, Platelets,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
December 2003, Arteriosclerosis, thrombosis, and vascular biology,
Milka Koupenova, and Lauren Clancy, and Heather A Corkrey, and Jane E Freedman
December 2010, Inflammation & allergy drug targets,
Copied contents to your clipboard!