In vivo mechanisms of alloreactivity. II. Allospecificity of cytotoxic T lymphocytes in sponge matrix allografts as determined by limiting dilution analysis. 1986

C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson

We have examined the frequency and alloantigen specificity of CTL that accumulate in sponge allografts (sponges seeded with allogeneic splenocytes) in sponge isografts (sponges seeded with syngeneic splenocytes), and in splenocyte-free sponge implants. Using limiting dilution analysis (LDA), we observed that sponge isografts and splenocyte-free sponge implants from C57BL/6 (H-2b) mice usually acquire small numbers of CTL (less than 250 cells per graft) with DBA/2 (H-2d)-reactivity or C3H/HeJ (H-2k)-reactivity. These alloreactive CTL are not detectable in conventional 51Cr-release assays, presumably because they are too infrequent and/or because they are inactive CTL precursors. When we examined the accumulation of alloreactive CTL in sponge allografts, we observed that DBA/2 sponge allografts from C57BL/6 recipients accumulate 10 to 100 times more DBA/2-reactive CTL than alloantigen-free sponge grafts. Nonetheless, these donor-reactive CTL rarely constitute more than 0.5% of the T cells recovered from sponge allografts, even at the peak of the rejection response. This raises questions concerning the remaining 99.5% of the allograft-infiltrating T cells. We were unable to detect by LDA any host-reactive CTL in sponge allografts, thus excluding the possibility that some of the remaining T cells were host-reactive CTL of donor origin which diluted graft-reactive T cells. However, using LDA we did detect a significant number of third-party (C3H/HeJ)-reactive CTL in sponge allografts, suggesting that the intense immune response at a graft site might facilitate indiscriminate recruitment of T lymphocytes. Alternatively, this enhanced third-party alloreactivity might reflect the proliferation of donor-reactive CTL with incidental crossreactivity for C3H/HeJ alloantigens. While testing these two alternatives, we observed that LDA cultures designed to detect third-party-reactive CTL could also support the growth of the in vivo-activated, donor-reactive CTL from sponge allografts; This compromised enumeration by LDA of the less frequent, third-party-reactive CTL by LDA. Although LDA is the only method that detects the growing population of third-party-reactive CTL in sponge allografts, technical restraints exclude LDA as a method of determining whether donor-reactive CTL and third-party-reactive CTL are separate or overlapping CTL subpopulations. Hence, it remains unclear if third-party-reactive CTL are a significant or insignificant proportion of the CTL that infiltrate sponge allografts.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005549 Foreign-Body Reaction Chronic inflammation and granuloma formation around irritating foreign bodies. Foreign Body Reaction,Reaction, Foreign-Body
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic

Related Publications

C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
September 1985, Scandinavian journal of immunology,
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
August 1983, Journal of immunology (Baltimore, Md. : 1950),
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
February 1983, Infection and immunity,
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
June 1980, Cellular immunology,
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
November 1983, Journal of immunology (Baltimore, Md. : 1950),
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
October 1997, Journal of immunological methods,
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
March 1981, Transplantation proceedings,
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
April 1983, Transplantation,
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
April 1988, Cellular immunology,
C G Orosz, and N E Zinn, and L P Sirinek, and R M Ferguson
April 1988, Transplantation proceedings,
Copied contents to your clipboard!