Experimental chronic hypoxic neuropathy: relevance to diabetic neuropathy. 1986

P A Low, and J D Schmelzer, and K K Ward, and J K Yao

The cardinal electrophysiological abnormalities in experimental diabetic (EDN) and experimental galactose (EGN) neuropathy, models in which endoneurial hypoxia has been demonstrated, are a slowing in nerve conduction velocity (NCV) and a resistance to ischemic conduction block (RICB). These electrophysiological abnormalities are also present in human diabetic neuropathy, where microangiopathy has been demonstrated to be more severe than in EDN so that endoneurial hypoxia is also likely to be present. We examined the effects of endoneurial hypoxia per se on normal nerves. In rats subjected to chronic hypoxia (10% O2) for up to 10 wk, the two electrophysiological abnormalities had developed by 4 wk and were very similar in degree to those seen in EDN and EGN. These abnormalities occurred in the absence of hyperglycemia, nerve sorbitol accumulation, or myoinositol reduction. Resting O2 consumption was reduced, the percent increase in nerve lactate under anoxic stress was increased, and nerve free sugars were normal. Hexokinase and phosphofructokinase activities were not altered substantially when studied under conditions of O2 excess. These findings indicate that hypoxia per se will cause conduction slowing and suggest that the hypoxic nerve develops RICB because of a reduced energy requirement and an increased efficiency of anaerobic glycolysis, but without major changes in the activity of its controlling glycolytic enzymes.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003929 Diabetic Neuropathies Peripheral, autonomic, and cranial nerve disorders that are associated with DIABETES MELLITUS. These conditions usually result from diabetic microvascular injury involving small blood vessels that supply nerves (VASA NERVORUM). Relatively common conditions which may be associated with diabetic neuropathy include third nerve palsy (see OCULOMOTOR NERVE DISEASES); MONONEUROPATHY; mononeuropathy multiplex; diabetic amyotrophy; a painful POLYNEUROPATHY; autonomic neuropathy; and thoracoabdominal neuropathy. (From Adams et al., Principles of Neurology, 6th ed, p1325) Diabetic Amyotrophy,Diabetic Autonomic Neuropathy,Diabetic Neuralgia,Diabetic Polyneuropathy,Neuralgia, Diabetic,Asymmetric Diabetic Proximal Motor Neuropathy,Diabetic Asymmetric Polyneuropathy,Diabetic Mononeuropathy,Diabetic Mononeuropathy Simplex,Diabetic Neuropathy, Painful,Mononeuropathy, Diabetic,Symmetric Diabetic Proximal Motor Neuropathy,Amyotrophies, Diabetic,Amyotrophy, Diabetic,Asymmetric Polyneuropathies, Diabetic,Asymmetric Polyneuropathy, Diabetic,Autonomic Neuropathies, Diabetic,Autonomic Neuropathy, Diabetic,Diabetic Amyotrophies,Diabetic Asymmetric Polyneuropathies,Diabetic Autonomic Neuropathies,Diabetic Mononeuropathies,Diabetic Mononeuropathy Simplices,Diabetic Neuralgias,Diabetic Neuropathies, Painful,Diabetic Neuropathy,Diabetic Polyneuropathies,Mononeuropathies, Diabetic,Mononeuropathy Simplex, Diabetic,Mononeuropathy Simplices, Diabetic,Neuralgias, Diabetic,Neuropathies, Diabetic,Neuropathies, Diabetic Autonomic,Neuropathies, Painful Diabetic,Neuropathy, Diabetic,Neuropathy, Diabetic Autonomic,Neuropathy, Painful Diabetic,Painful Diabetic Neuropathies,Painful Diabetic Neuropathy,Polyneuropathies, Diabetic,Polyneuropathies, Diabetic Asymmetric,Polyneuropathy, Diabetic,Polyneuropathy, Diabetic Asymmetric,Simplex, Diabetic Mononeuropathy,Simplices, Diabetic Mononeuropathy

Related Publications

P A Low, and J D Schmelzer, and K K Ward, and J K Yao
May 1990, Diabetologia,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
July 1992, Journal of the neurological sciences,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
May 1981, The American journal of pathology,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
January 1993, Diabetic medicine : a journal of the British Diabetic Association,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
July 1982, Clinical science (London, England : 1979),
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
July 1999, Diabetologia,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
January 1986, Drugs,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
June 2023, Diabetes,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
April 2020, Diabetes therapy : research, treatment and education of diabetes and related disorders,
P A Low, and J D Schmelzer, and K K Ward, and J K Yao
December 2002, Current diabetes reports,
Copied contents to your clipboard!