Actin content and organization of microfilaments in primary cultures of mouse embryonic fibroblasts (in vitro ageing). 1985

P Van Gansen, and A Pays, and L Malherbe

Actin distribution in serially passaged embryonic mouse fibroblasts has been visualized by the anti-actin-PAP method; the organization of the microfilaments has been observed by electron microscopy (SEM and TEM). Four successive actin patterns have been identified: early (few well-organized bundles of microfilaments), middle-aged (many well-organized bundles and patches around the nucleus), late (numerous ill-organized filamentous structures and diffuse perinuclear-actin) and "senescent" (heavy packs of short microfilaments around the nucleus). All the observed actin-positive filaments were disrupted by cytochalasin B treatment. The cytoplasmic actin complex was cell-age and not cell-size-dependent; it behaved differently from the cytoplasmic microtubular complex to serially subcultivated fibroblasts. Measurements of the cell-protein content (Lowry's method) and SDS-polyacrylamide gel electrophoresis (Laemmli's method) have been performed in the successive population doubling levels (PDL) of the primary cultures. Triton-insoluble actin increased in parallel with total protein and reached about 4% of the total proteins in all the PDLs. Triton-soluble actin also increase at the beginning of the middle-aged period (generally 6 PDL) and another in declining cultures (generally 10 PDL). Total actin amounted to about 8% of the total proteins in early fibroblasts, to about 16% at the beginning of the middle-aged period and to about 20% in the declining terminal cultures. Taking into account all the known characteristics of subcultivated primary cultures, we tentatively consider the evolution of the fibroblasts as an in vitro differentiation followed by true in vitro senescence in the declining cultures. Regarding the cytoplasmic actin-complex, senescence would be characterized by a sharp increase in soluble actin, an unbalanced ratio between soluble and insoluble actin and an impairment of the ability of the microfilaments to form well-organized bundles.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Van Gansen, and A Pays, and L Malherbe
January 1983, Experimental gerontology,
P Van Gansen, and A Pays, and L Malherbe
March 2017, Molecular biology of the cell,
P Van Gansen, and A Pays, and L Malherbe
February 1981, Annals of neurology,
P Van Gansen, and A Pays, and L Malherbe
November 2016, Materials science & engineering. C, Materials for biological applications,
P Van Gansen, and A Pays, and L Malherbe
January 1984, Journal of cell science,
P Van Gansen, and A Pays, and L Malherbe
October 1984, Mechanisms of ageing and development,
P Van Gansen, and A Pays, and L Malherbe
January 1982, Cell and tissue research,
P Van Gansen, and A Pays, and L Malherbe
January 1989, Toxicology in vitro : an international journal published in association with BIBRA,
P Van Gansen, and A Pays, and L Malherbe
May 1971, Experimental cell research,
P Van Gansen, and A Pays, and L Malherbe
April 2024, Proteomics,
Copied contents to your clipboard!