Immunoadsorption of Cryptococcus-specific suppressor T-cell factors. 1986

R L Mosley, and J W Murphy, and R A Cox

In the murine cryptococcal suppressor cell circuit, two different T-cell suppressor factors, TsF1 and TsF2, have been identified which specifically suppress the delayed-type hypersensitivity (DTH) response to cryptococcal culture filtrate antigen (CneF). TsF1 is produced by a first-order T suppressor (Ts1) cell population and suppresses the afferent limb of the DTH response, whereas TsF2 is produced by a second-order T suppressor (Ts2) cell population and suppresses the efferent limb of the cryptococcal DTH response. The objective of this study was to ascertain whether TsF1 or TsF2 could bind to cryptococcal antigen. To assess this, adsorption of TsF1 and TsF2 was performed with heat-killed Cryptococcus neoformans cells and by solid-phase immunoadsorption (SPIA) on columns containing cryptococcal antigens, i.e., CneF covalently bound to Sepharose 4B. The suppressive effect of TsF1 was removed by adsorption with intact heat-killed cryptococci and by SPIA on CneF-Sepharose 4B. The binding of cryptococcal TsF1 to the cryptococcal SPIA column was shown to be specific since Sepharose 4B columns either coupled with Saccharomyces cerevisiae mannan or blocked with glycine did not adsorb the suppressor activity. In contrast, the suppressive component of TsF2 did not bind to heat-killed cryptococci, CneF-Sepharose 4B, S. cerevisiae mannan-Sepharose 4B, or glycine-Sepharose 4B columns. These results, together with the finding that cryptococcal antigen, anticryptococcal antibody, and C1q-binding immune complexes were not demonstrated in either TsF1 or TsF2, establish that TsF1 and TsF2 can be differentiated on the basis of their affinity for cryptococcal antigen.

UI MeSH Term Description Entries
D006968 Hypersensitivity, Delayed An increased reactivity to specific antigens mediated not by antibodies but by sensitized T CELLS. Hypersensitivity, Tuberculin-Type,Hypersensitivity, Type IV,Tuberculin-Type Hypersensitivity,Type IV Hypersensitivity,Delayed Hypersensitivity,Delayed Hypersensitivities,Hypersensitivity, Tuberculin Type,Tuberculin Type Hypersensitivity,Tuberculin-Type Hypersensitivities,Type IV Hypersensitivities
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D003454 Cryptococcus A mitosporic Tremellales fungal genus whose species usually have a capsule and do not form pseudomycellium. Teleomorphs include Filobasidiella and Fidobasidium. Torula
D003455 Cryptococcus neoformans A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans. Blastomyces neoformans,Debaryomyces neoformans,Filobasidiella neoformans,Lipomyces neoformans,Saccharomyces neoformans,Torula neoformans,Torulopsis neoformans,Cryptococcus neoformans var. grubii
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000908 Antibodies, Fungal Immunoglobulins produced in a response to FUNGAL ANTIGENS. Fungal Antibodies
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune
D000946 Antigens, Fungal Substances of fungal origin that have antigenic activity. Fungal Antigen,Fungal Antigens,Antigen, Fungal
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

R L Mosley, and J W Murphy, and R A Cox
February 1986, Journal of immunology (Baltimore, Md. : 1950),
R L Mosley, and J W Murphy, and R A Cox
August 1984, Hospital practice (Office ed.),
R L Mosley, and J W Murphy, and R A Cox
August 1981, Immunology,
R L Mosley, and J W Murphy, and R A Cox
January 1982, Annales d'immunologie,
R L Mosley, and J W Murphy, and R A Cox
February 1981, Journal of immunology (Baltimore, Md. : 1950),
R L Mosley, and J W Murphy, and R A Cox
October 1982, Clinics in haematology,
R L Mosley, and J W Murphy, and R A Cox
January 1978, Current topics in microbiology and immunology,
R L Mosley, and J W Murphy, and R A Cox
April 1977, Cellular immunology,
Copied contents to your clipboard!