Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. 2018

S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.

Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability, and is the leading known single-gene cause of autism spectrum disorder. FXS patients display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently there is no cure for this condition, however minocycline is becoming commonly prescribed as a treatment for FXS patients. Minocycline has been reported to alleviate social behavioural deficits, and improve verbal functioning in patients with FXS; however, its mode of action is not well understood. Previously we have shown that FXS results in learning impairments that involve deficits in N-methyl-d-aspartate (NMDA) receptor-dependent synaptic plasticity in the hippocampal dentate gyrus (DG). Here we tested whether chronic treatment with minocycline can improve these deficits by enhancing NMDA receptor-dependent functional and structural plasticity in the DG. Minocycline treatment resulted in a significant enhancement in NMDA receptor function in the dentate granule cells. This was accompanied by an increase in PSD-95 and GluN2A and GluN2B subunits in hippocampal synaptoneurosome fractions. Minocycline treatment also enhanced dentate granule cell dendritic length and branching. In addition, our results show that chronic minocycline treatment can rescue performance in novel object recognition in FXS mice. These findings indicate that minocycline treatment has both structural and functional benefits for hippocampal cells, which may partly contribute to the pro-cognitive effects minocycline appears to have for treating FXS.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008911 Minocycline A TETRACYCLINE analog, having a 7-dimethylamino and lacking the 5 methyl and hydroxyl groups, which is effective against tetracycline-resistant STAPHYLOCOCCUS infections. Akamin,Akne-Puren,Aknemin,Aknin-Mino,Aknosan,Apo-Minocycline,Arestin,Blemix,Cyclomin,Cyclops,Dentomycin,Dynacin,Icht-Oral,Klinomycin,Lederderm,Mestacine,Minakne,Mino-Wolff,Minocin,Minocin MR,Minoclir,Minocycline Hydrochloride,Minocycline Monohydrochloride,Minocycline, (4R-(4 alpha,4a beta,5a beta,12a beta))-Isomer,Minolis,Minomycin,Minoplus,Minotab,Minox 50,Mynocine,Akne Puren,Aknin Mino,Apo Minocycline,Hydrochloride, Minocycline,Icht Oral,Mino Wolff,Monohydrochloride, Minocycline
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
October 2016, Behavioural brain research,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
September 2016, Neuroscience letters,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
October 2016, Behavioural brain research,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
February 2012, Hippocampus,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
January 2011, PloS one,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
March 2024, Neuropharmacology,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
September 2010, Hippocampus,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
January 2017, PloS one,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
April 2004, Behavioural brain research,
S Y Yau, and Luis Bettio, and M Vetrici, and A Truesdell, and C Chiu, and J Chiu, and E Truesdell, and B R Christie
December 2016, Neurobiology of disease,
Copied contents to your clipboard!