[Activity of substantia nigra pars reticulata neurons after lesion of the ipsilateral neostriatum by kainic acid in rats]. 1985

C Pouchot, and D Doudet, and C Gross, and B Bioulac

Huntington's chorea is a degenerative disorder of the human brain characterized by a marked loss of intrinsic neostriatal neurons. This situation can be reproduced by kainic acid injection in the caudate nucleus. Activity of pars reticulata neurons ipsilateral to the injected neostriatum was studied in normal, control (saline-injected) and lesioned rats. They were identified by electrophysiological and histological criteria (Fig. 1). Results obtained in normal and control rats were very similar (Table I). As previously described, the mean frequency of these neurons was high. An important percentage (respectively 72.5 and 73%) and these neurons presented the characteristics of a regular firing pattern (so called "organized neurons"). Results obtained in kainic acid lesioned rats were significantly different (Table I). The mean frequency was lower and only 11% of reticulata cells remained organized after neostriatal lesion. This important dysfunction may be explained in various ways: The neostriato-nigral pathway's destruction involves both the inhibitory GABAergic tract and the excitatory substance P tract (GALE et al., 1978). Other inputs arising from many structures in the brain continue to exert their own action on SN neurons, resulting in an unbalance in the SN inputs. It is well known that the nigral dopamine influences the neuronal activity of pars reticulata neurons (Ruffieux et Schultz, 1980; Waszczak et Walters, 1983). Doudet et al. (1984 b) previously reported a dysfunction of neuronal activity of dopaminergic cells after striatal lesion. A disturbance in the electrical activity may induce a similar disturbance in the intranigral dendritic release of DA.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011699 Putamen The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS. Nucleus Putamen,Nucleus Putamens,Putamen, Nucleus,Putamens,Putamens, Nucleus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006816 Huntington Disease A familial disorder inherited as an autosomal dominant trait and characterized by the onset of progressive CHOREA and DEMENTIA in the fourth or fifth decade of life. Common initial manifestations include paranoia; poor impulse control; DEPRESSION; HALLUCINATIONS; and DELUSIONS. Eventually intellectual impairment; loss of fine motor control; ATHETOSIS; and diffuse chorea involving axial and limb musculature develops, leading to a vegetative state within 10-15 years of disease onset. The juvenile variant has a more fulminant course including SEIZURES; ATAXIA; dementia; and chorea. (From Adams et al., Principles of Neurology, 6th ed, pp1060-4) Huntington Chorea,Juvenile Huntington Disease,Akinetic-Rigid Variant of Huntington Disease,Chorea, Chronic Progressive Hereditary (Huntington),Chronic Progressive Hereditary Chorea (Huntington),Huntington Chronic Progressive Hereditary Chorea,Huntington Disease, Akinetic-Rigid Variant,Huntington Disease, Juvenile,Huntington Disease, Juvenile-Onset,Huntington Disease, Late Onset,Huntington's Chorea,Huntington's Disease,Juvenile-Onset Huntington Disease,Late-Onset Huntington Disease,Progressive Chorea, Chronic Hereditary (Huntington),Progressive Chorea, Hereditary, Chronic (Huntington),Akinetic Rigid Variant of Huntington Disease,Chorea, Huntington,Chorea, Huntington's,Huntington Disease, Akinetic Rigid Variant,Huntington Disease, Juvenile Onset,Huntington Disease, Late-Onset,Juvenile Onset Huntington Disease,Late Onset Huntington Disease
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Pouchot, and D Doudet, and C Gross, and B Bioulac
September 2000, Brain research,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
January 1984, Comptes rendus des seances de la Societe de biologie et de ses filiales,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
March 1996, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
May 2000, Journal of neurophysiology,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
June 1986, Neuroscience letters,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
January 1985, Experimental brain research,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
August 1983, Brain research bulletin,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
February 2000, Neuroscience letters,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
October 1999, Brain research,
C Pouchot, and D Doudet, and C Gross, and B Bioulac
July 2006, Neuroscience,
Copied contents to your clipboard!