Desensitization. V: Suppression of MIF production by lymphokine-activated macrophages. 1985

M Suko, and T Yoshida, and S Cohen

The systemic injection of high doses of antigen into a previously immunized animal results in a state of transient anergy with respect to cell-mediated immune reactions. This phenomenon is known as desensitization. We have previously shown that desensitization is a multistage process. The initial 24-hr period is characterized by excessive lymphokine production with a failure to express delayed hypersensitivity reactions due to abolition of local chemotactic gradients. Subsequent stages of desensitization involve failure of lymphokine production in vivo. The results presented here demonstrate that lymphocytes obtained from immunized and desensitized animals later than 24 hr after desensitization are markedly suppressed in their ability to produce MIF. In addition, it was found that lymphokine-activated macrophages can suppress in vitro MIF production by lymphocytes from immune, nondesensitized animals. In vitro and in vivo activation of macrophages were equally effective. Thus, it is likely that at least one mechanism for the inhibition of lymphokine production in the post-24-hr period of desensitization, involves activation of a population of suppressor macrophages by lymphokines produced during the initial 24-hr period.

UI MeSH Term Description Entries
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008263 Macrophage Migration-Inhibitory Factors Proteins released by sensitized LYMPHOCYTES and possibly other cells that inhibit the migration of MACROPHAGES away from the release site. The structure and chemical properties may vary with the species and type of releasing cell. Macrophage Migration Inhibitory Factor,Migration Inhibition Factors, Macrophage,Macrophage Migration Inhibition Factors,Migration Inhibition Factor, Macrophage,Macrophage Migration Inhibitory Factors,Migration-Inhibitory Factors, Macrophage
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D003888 Desensitization, Immunologic Immunosuppression by the administration of increasing doses of antigen. Though the exact mechanism is not clear, the therapy results in an increase in serum levels of allergen-specific IMMUNOGLOBULIN G, suppression of specific IgE, and an increase in suppressor T-cell activity. Allergen Immunotherapy,Allergy Shots,Hyposensitization Therapy,Immunotherapy, Allergen,Venom Immunotherapy,Immunologic Desensitization,Therapy, Hyposensitization,Allergen Immunotherapies,Allergy Shot,Desensitizations, Immunologic,Hyposensitization Therapies,Immunologic Desensitizations,Immunotherapy, Venom,Shot, Allergy,Venom Immunotherapies
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013491 Suppressor Factors, Immunologic Proteins, protein complexes, or glycoproteins secreted by suppressor T-cells that inhibit either subsequent T-cells, B-cells, or other immunologic phenomena. Some of these factors have both histocompatibility (I-J) and antigen-specific domains which may be linked by disulfide bridges. They can be elicited by haptens or other antigens and may be mass-produced by hybridomas or monoclones in the laboratory. Immunologic Suppressor Factors,Suppressor T-Cell Factors,T-Cell Suppressive Factors,T-Suppressor Factors,Factors, Immunologic Suppressor,Factors, T Suppressor,Suppressor Factor (SF4),T Cell Suppressor Factors,Factors, Suppressor T-Cell,Factors, T-Cell Suppressive,Factors, T-Suppressor,Suppressive Factors, T-Cell,Suppressor Factors, T,Suppressor T Cell Factors,T Cell Suppressive Factors,T Suppressor Factors,T-Cell Factors, Suppressor
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

M Suko, and T Yoshida, and S Cohen
January 1975, Science (New York, N.Y.),
M Suko, and T Yoshida, and S Cohen
November 1980, Cellular immunology,
M Suko, and T Yoshida, and S Cohen
May 1977, Journal of the Reticuloendothelial Society,
M Suko, and T Yoshida, and S Cohen
October 1977, European journal of immunology,
M Suko, and T Yoshida, and S Cohen
July 1979, International journal of cancer,
M Suko, and T Yoshida, and S Cohen
March 1980, Bollettino dell'Istituto sieroterapico milanese,
M Suko, and T Yoshida, and S Cohen
November 1986, Kidney international,
M Suko, and T Yoshida, and S Cohen
December 1988, Journal of immunology (Baltimore, Md. : 1950),
M Suko, and T Yoshida, and S Cohen
June 1978, Inflammation,
M Suko, and T Yoshida, and S Cohen
April 1981, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!