Myosin isozyme distribution in rodent hindlimb skeletal muscle. 1986

D B Thomason, and K M Baldwin, and R E Herrick

The purpose of this study was to examine the distribution of myosin isozymes in rodent (Rattus norvegicus) hindlimb skeletal muscles and regions of muscle known to have contrasting fiber-type composition. Muscle samples were analyzed for Ca2+-regulated myofibril adenosine triphosphatase (ATPase) activity, Ca2+-activated myosin ATPase activity, myosin isozyme profile, and myosin light chain profile. Four isozymes of myosin were identified based on native protein and light chain electrophoresis patterns: one associated primarily with slow-twitch muscle (SM) and three associated primarily with fast-twitch muscle (FM). Multiple linear regression analysis of Ca2+-regulated myofibril ATPase activity (pCA 4) vs. measured isozyme profile was used to estimate the myofibril ATPase activities of the individual isozymes (FM1 = 0.86, FM2 = 0.52, FM3 = 0.31, and SM = 0.15 mumol Pi formed . mg myofibril protein-1 . min-1 at 25 degrees C, n = 180, P less than 0.001). Differences in the native isozyme profiles and myofibril ATPase activities between muscles and muscle regions of similar fiber type composition indicate that a given fiber type may not necessarily express a single isozyme profile. These data are consistent with the hypothesis that, among rodent hindlimb skeletal muscles and inherently their motor units, a range of myosin isozyme profiles exists that may provide a broad range of mechanical expression.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

D B Thomason, and K M Baldwin, and R E Herrick
June 2001, Diabetes,
D B Thomason, and K M Baldwin, and R E Herrick
November 1987, Journal of applied physiology (Bethesda, Md. : 1985),
D B Thomason, and K M Baldwin, and R E Herrick
January 1990, European journal of applied physiology and occupational physiology,
D B Thomason, and K M Baldwin, and R E Herrick
June 1978, FEBS letters,
D B Thomason, and K M Baldwin, and R E Herrick
April 1979, The Journal of cell biology,
D B Thomason, and K M Baldwin, and R E Herrick
December 1993, Journal of applied physiology (Bethesda, Md. : 1985),
D B Thomason, and K M Baldwin, and R E Herrick
January 1985, Advances in experimental medicine and biology,
D B Thomason, and K M Baldwin, and R E Herrick
July 1988, The Journal of physiology,
D B Thomason, and K M Baldwin, and R E Herrick
January 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
D B Thomason, and K M Baldwin, and R E Herrick
August 1974, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!