Homeostatic Plasticity in the Hippocampus Facilitates Memory Extinction. 2018

Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Michel-Servet 1, 1211 Geneva, Switzerland. Electronic address: pmendez@cajal.csic.es.

Correlated activity in the hippocampus drives synaptic plasticity that is necessary for the recruitment of neuronal ensembles underlying fear memory. Sustained neural activity, on the other hand, may trigger homeostatic adaptations. However, whether homeostatic plasticity affects memory function remains unknown. Here, we use optogenetics to induce cell autonomous homeostatic plasticity in CA1 pyramidal neurons and granule cells of the hippocampus. High-frequency spike trains applied for 10 min decreased the number of excitatory spine synapses and increased the number of inhibitory shaft synapses. This activity stopped dendritic spine formation via L-type voltage-dependent calcium channel activity and protein synthesis. Applied selectively to the ensemble of granule cells encoding a contextual fear memory, the spike trains impaired memory recall and facilitated extinction. Our results indicate that homeostatic plasticity triggered by optogenetic neuronal firing alters the balance between excitation and inhibition in favor of memory extinction.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005108 Extinction, Psychological The procedure of presenting the conditioned stimulus without REINFORCEMENT to an organism previously conditioned. It refers also to the diminution of a conditioned response resulting from this procedure. Psychological Extinction,Extinction (Psychology),Extinctions (Psychology),Extinctions, Psychological,Psychological Extinctions
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
January 2022, Neuropharmacology,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
June 2020, Biological psychiatry,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
January 2021, Frontiers in cellular neuroscience,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
January 2013, PloS one,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
December 2023, Progress in neuro-psychopharmacology & biological psychiatry,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
May 2003, Neurobiology of learning and memory,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
January 2021, Proceedings of the National Academy of Sciences of the United States of America,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
October 1997, Stress (Amsterdam, Netherlands),
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
January 2017, Neuropharmacology,
Pablo Mendez, and Thomas Stefanelli, and Carmen E Flores, and Dominique Muller, and Christian Lüscher
October 2008, Molecular psychiatry,
Copied contents to your clipboard!