Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. 1986

B Swynghedauw

The goal of this review is to summarize our knowledge of the plasticity of striated muscles in terms of contractile proteins. During development or when the working conditions are changed, the intrinsic physiological properties of both cardiac and skeletal muscles are modified. These modifications generally adapt the muscle to the new environmental requirements. One of the best examples is compensatory overload obtained in fast skeletal muscle by synergistic tenotomy and in a fast ventricle, such as in rats, by aortic banding. In both cases, after a few weeks the initial speed of shortening for the unloaded muscle drops, whereas the maximum tension developed remains unchanged. Heat measurements show that efficiency (i.e., g work/mol ATP) is improved at the fiber level. The fast skeletal muscle becomes slow, fatigue resistant, and then more adapted to endurance. For the ventricle as a whole to become slow is beneficial only if one contraction is considered; however, it is detrimental in terms of cardiac output and leads finally to failure. This adaptational process is partly explained by quantitative and qualitative changes in contractile proteins. Protein synthesis is rapidly enhanced and muscles hypertrophy, which in turn multiplies the contractile units and for the cardiac cylinder normalizes the wall stress. In the meantime the structure and, for myosin, the biological activity of several contractile proteins are modified. These modifications are very unlikely to be posttranscriptional and are in fact explained by several isoform shifts. In both tissues, for example, the expression of the gene coding for a fast myosin (MHCf in skeletal muscle, alpha-MHC in ventricles) is repressed and that of the gene coding for a slow myosin (beta-MHC in both tissues) is stimulated. This is accompanied by a coordinated increase in synthesis of other contractile proteins and, in skeletal muscle only, by isoform shifts of myosin light chains and of the TM-TN regulatory system. Other changes are less well understood. During development it has recently been discovered that three different MHCs (MHCemb, MHCneo, and MHCf) appear sequentially in fast skeletal muscle, which explains, for example, several contradictions of immunological cross-reactions. Currently, however, the functional significance of this finding is unknown, and the well-known decrease of shortening velocity observed in cardiac and skeletal muscles during fetal life is unexplained in terms of contractile proteins.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

B Swynghedauw
January 1989, Biomedica biochimica acta,
B Swynghedauw
January 1986, Ceskoslovenska fysiologie,
B Swynghedauw
January 1985, Basic research in cardiology,
B Swynghedauw
January 1983, Comparative biochemistry and physiology. A, Comparative physiology,
B Swynghedauw
October 1995, Current opinion in neurology,
B Swynghedauw
April 1993, The American journal of physiology,
B Swynghedauw
January 1980, Acta physiologica Academiae Scientiarum Hungaricae,
B Swynghedauw
January 1987, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!