Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. 2018

Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Supplementation with inorganic nitrate to boost the nitrate-nitrite-nitric oxide (NO) pathway, may act as a potential therapeutic agent in diabetes. The aim of this study was to determine the effects of nitrate on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in obese type 2 diabetic rats. Male Wistar rats were divided into 4 groups: Control, control + nitrate, diabetes, and diabetes + nitrate. Diabetes was induced using a high-fat diet and low-dose of streptozotocin. Sodium nitrate (100 mg/L in drinking water) was administered simultaneously for two months. Serum levels of fasting glucose, insulin, and lipid profiles were measured every 2-weeks. Glycated hemoglobin (HbA1c) was measured monthly. Serum thiobarbituric reactive substances (TBARS) level and catalase activity were measured before and after treatment. At the end of the study, glucose, pyruvate, and insulin tolerance tests were done. Glucose-stimulated insulin secretion (GSIS) and insulin content from isolated pancreatic islets were also assessed; mRNA expression of iNOS as well as mRNA expression and protein levels of GLUT4 in insulin-sensitive tissues, and serum IL-1β were determined. Nitrate supplementation in diabetic rats significantly improved glucose tolerance, lipid profiles, and catalase activity as well as decreased gluconeogenesis, fasting glucose, insulin, and IL-1β; although it had no significant effect on GSIS, islet insulin content, HbA1c, and serum TBARS. Compared to the controls, in diabetic rats, mRNA expression and protein levels of GLUT4 were significantly lower in the soleus muscle (54% and 34%, respectively) and epididymal adipose tissue (67% and 41%, respectively). In diabetic rats, nitrate administration increased GLUT4 mRNA expression and protein levels in both soleus muscle (215% and 17%, respectively) and epididymal adipose tissue (344% and 22%, respectively). In diabetic rats, nitrate significantly decreased elevated iNOS mRNA expression in both the soleus muscle and epididymal adipose tissue. Chronic nitrate supplementation in obese type 2 diabetic rats improved glucose tolerance, insulin resistance, and dyslipidemia; these favorable effects were associated with increased mRNA and protein expression of GLUT4 and decreased mRNA expression of iNOS in insulin-sensitive tissues, and with decreased gluconeogenesis, inflammation, and oxidative stress.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008297 Male Males
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
August 2019, Life sciences,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
May 2019, Nitric oxide : biology and chemistry,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
May 2019, Journal of food science,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
January 1988, Clinical nephrology,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
April 2017, Endocrine journal,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
January 2018, Journal of the American College of Nutrition,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
December 2021, The Journal of nutritional biochemistry,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
January 1985, Contraception,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
October 2011, Pakistan journal of biological sciences : PJBS,
Sevda Gheibi, and Sajad Jeddi, and Mattias Carlström, and Hanieh Gholami, and Asghar Ghasemi
March 2015, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,
Copied contents to your clipboard!