Resveratrol protects against sodium nitroprusside induced nucleus pulposus cell apoptosis by scavenging ROS. 2018

Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.

Oxidative stress induced disc cell apoptosis plays an important role in intervertebral disc (IVD) degeneration. The present study aims to investigate effects of resveratrol (RV), a natural polyphenol compound, on sodium nitroprusside (SNP) induced nucleus pulposus (NP) cell apoptosis and related mechanism. Rat NP cells were pretreated with RV, N-acetyl cysteine (NAC) and carboxy-PTIO (PTIO) before SNP treatment. Cell Counting Kit-8 assay was carried out for cell viability evaluation. Annexin V/propidium iodide (PI), Hoechst 33258 and Actin‑Tracker Green and Tubulin-Tracker Red staining were conducted to detect NP cell apoptosis and apoptotic structural changes. Mitochondrial membrane potential (ΔΨm) was analyzed with tetramethylrhodamine methyl ester staining. DCFH-DA and DAF-FM DA staining was used to determine intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels. An ex vivo experiment was also carried out followed by TUNEL assay of sections of discs. SNP induced NP cell apoptosis, excessive production of intracellular ROS and NO, reduction of ΔΨm as well as disruption of cytoskeletal and morphological structure. Meanwhile, organ culture results showed that SNP induced NP cell apoptosis ex vivo. RV and NAC siginificantly inhibited SNP induced NP cell apoptosis, production of intracellular ROS, deline of ΔΨm as well as disruption of cytoskeletal and morphological structure, while RV did not suppress NO production. RV and NAC could also suppress SNP induced NP cell apoptosis ex vivo. However, PTIO did not prevent SNP induced NP cell apoptosis, though it scavenged NO significantly. In conclusion, RV protects against SNP induced NP cell apoptosis by scavenging ROS but not NO, suggesting a promising prospect of RV in IVD degeneration retardation.

UI MeSH Term Description Entries
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000070614 Nucleus Pulposus Fibrocartilage inner core of the intervertebral disc. Prolapsed or bulged nucleus pulposus leads to INTERVERTEBRAL DISC DISPLACEMENT while proliferation of cells in the nucleus pulposus is associated with INTERVERTEBRAL DISC DEGENERATION.
D000077185 Resveratrol A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. 3,4',5-Stilbenetriol,3,4',5-Trihydroxystilbene,3,5,4'-Trihydroxystilbene,Resveratrol, (Z)-,Resveratrol-3-sulfate,SRT 501,SRT-501,SRT501,cis-Resveratrol,trans-Resveratrol,trans-Resveratrol-3-O-sulfate,Resveratrol 3 sulfate,cis Resveratrol,trans Resveratrol,trans Resveratrol 3 O sulfate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
September 2014, Apoptosis : an international journal on programmed cell death,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
January 2012, Acta pharmacologica Sinica,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
June 2018, European journal of pharmacology,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
July 2022, Experimental & molecular medicine,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
October 2015, Carbohydrate polymers,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
July 2020, Bioscience reports,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
May 2014, Apoptosis : an international journal on programmed cell death,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
January 2021, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Kang Li, and Yan Li, and Jie Mi, and Lu Mao, and Xiuguo Han, and Jie Zhao
November 2017, Biochemical and biophysical research communications,
Copied contents to your clipboard!