Antimicrobial Synthetic Polymers: An Update on Structure-Activity Relationships. 2018

Cansu Ergene, and Edmund F Palermo
Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.

The rising incidence of antibiotic-resistant infections, combined with a declining number of new antibiotic drug approvals, has generated an alarming therapeutic gap that critically undermines public health. Host Defense Peptides (HDPs), sometimes referred to as "Nature's Antibiotics", are short chain, amphiphilic and cationic peptide sequences found in all multicellular organisms as part of their innate immunity. While there is a vast diversity in terms of HDP sequence and secondary structure, they all seem to share physiochemical characteristics that can be appropriated for macromolecular design by the synthetic polymer chemist. Over the past decade, remarkable progress has been made in the design and synthesis of polymer-based materials that effectively mimic HDP action - broad-spectrum antibacterial potency, rapid bactericidal kinetics, and minimal toxicity to human cells - while offering the additional benefits of low cost, high scalability, and lower propensity to induce resistance, relative to their peptide-based counterparts. A broad range of different macromolecular structures and architectures have been explored in this design space, including polynorbornenes, poly(meth)acrylates, poly(meth)acrylamides, nylon-2 polymers, and polycarbonates, to name a just few. Across all of these diverse chemical categories, the key determinants of antibacterial and hemolytic activity are the same as in HDPs: net cationic charge at neutral pH, well-balanced facial amphiphilicity, and the molecular weight of the compounds. In this review, we focus in particular on recent progress in the polymethacrylate category first pioneered by Kuroda and DeGrado and later modified, expanded upon and rigorously optimized by Kuroda's and many other groups. Key findings and future challenges will be highlighted.

UI MeSH Term Description Entries
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

Cansu Ergene, and Edmund F Palermo
November 2009, Chemistry (Weinheim an der Bergstrasse, Germany),
Cansu Ergene, and Edmund F Palermo
January 1996, Phytochemistry,
Cansu Ergene, and Edmund F Palermo
December 1973, Journal of medicinal chemistry,
Cansu Ergene, and Edmund F Palermo
January 2017, Current topics in behavioral neurosciences,
Cansu Ergene, and Edmund F Palermo
January 1975, Research communications in chemical pathology and pharmacology,
Cansu Ergene, and Edmund F Palermo
October 1991, Die Pharmazie,
Cansu Ergene, and Edmund F Palermo
December 1998, Planta medica,
Cansu Ergene, and Edmund F Palermo
January 2012, Current medicinal chemistry,
Cansu Ergene, and Edmund F Palermo
November 1993, Phytochemistry,
Copied contents to your clipboard!