Imidacloprid affects rat liver mitochondrial bioenergetics by inhibiting FoF1-ATP synthase activity. 2018

Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
a College of Agricultural and Technological Sciences , São Paulo State University (Unesp) , Dracena , SP , Brazil.

Imidacloprid (IMD) is a neonicotinoid insecticide widely used in crops, pets, and on farm animals for pest control. Several studies were conducted examining the adverse effects of IMD on animals often exhibiting hepatic damage. The aim of this study was to determine the effects of IMD on bioenergetics of mitochondria isolated from rat liver. Imidacloprid (50-200 µM) produced a concentration-dependent decrease in oxygen consumption and ATP production without markedly affecting mitochondrial membrane potential (MMP). Oxygen consumption experiments showed that IMD did not significantly affect the respiratory chain, and this was similar to findings with oligomycin and carboxyatractyloside, suggesting a direct action on FoF1-ATP synthase and/or the adenine nucleotide translocator (ANT). Imidacloprid inhibited FoF1-ATP synthase activity only in disrupted mitochondria and induced a partial inhibition of ADP-stimulated depolarization of the MMP. Our results indicate that IMD interacts specifically with FoF1-ATP synthase resulting in functional inhibition of the enzyme with consequent impairment of mitochondrial bioenergetics. These effects of IMD on mitochondrial bioenergetics may be related to adverse effects of this insecticide on the liver.

UI MeSH Term Description Entries
D007306 Insecticides Pesticides designed to control insects that are harmful to man. The insects may be directly harmful, as those acting as disease vectors, or indirectly harmful, as destroyers of crops, food products, or textile fabrics. Insecticide
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009574 Nitro Compounds Compounds having the nitro group, -NO2, attached to carbon. When attached to nitrogen they are nitramines and attached to oxygen they are NITRATES. Nitrated Compounds
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000073943 Neonicotinoids A class of insecticides that are structurally similar to NICOTINE and have physiologically similar effects as agonists of NICOTINIC ACETYLCHOLINE RECEPTORS, but are less toxic to vertebrates. They are widely used in agriculture. Neonicotinoid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
May 1994, Biochemistry and molecular biology international,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
August 2007, Cancer science,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
August 2011, The FEBS journal,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
August 2016, Biochimica et biophysica acta,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
November 2016, Pharmacological research,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
April 2021, Biochimica et biophysica acta. Bioenergetics,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
January 2013, Biophysics (Nagoya-shi, Japan),
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
February 2005, Proceedings of the National Academy of Sciences of the United States of America,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
October 2021, International journal of molecular sciences,
Paulo F V Bizerra, and Anilda R J S Guimarães, and Marcos A Maioli, and Fábio E Mingatto
October 2018, Biochemistry. Biokhimiia,
Copied contents to your clipboard!