Low CD25 on autoreactive Tregs impairs tolerance via low dose IL-2 and antigen delivery. 2018

Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA.

Dendritic cell (DC)-mediated T cell tolerance deficiencies contribute to the pathogenesis of autoimmune diseases such as type 1 diabetes. Delivering self-antigen to dendritic-cell inhibitory receptor-2 (DCIR2)+ DCs can delay but not completely block diabetes development in NOD mice. These DCIR2-targeting antibodies induce tolerance via deletion and anergy, but do not increase islet-specific Tregs. Because low-dose IL-2 (LD-IL-2) administration can preferentially expand Tregs, we tested whether delivering islet-antigen to tolerogenic DCIR2+ DCs along with LD-IL-2 would boost islet-specific Tregs and further block autoimmunity. But, surprisingly, adding LD-IL-2 did not increase efficacy of DC-targeted antigen to inhibit diabetes. Here we show the effects of LD-IL-2, with or without antigen delivery to DCIR2+ DCs, on both polyclonal and autoreactive Treg and conventional T cells (Tconv). As expected, LD-IL-2 increased total Tregs, but autoreactive Tregs required both antigen and IL-2 stimulation for optimal expansion. Also, islet-specific Tregs had lower CD25 expression and IL-2 sensitivity, while islet-specific Tconv had higher CD25 expression, compared to polyclonal populations. LD-IL-2 increased activation and expansion of Tconv, and was more pronounced for autoreactive cells after treatment with IL-2 + islet-antigen. Therefore, LD-IL-2 therapy, especially when combined with antigen stimulation, may not optimally activate and expand antigen-specific Tregs in chronic autoimmune settings.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
September 2006, The Journal of clinical investigation,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
November 2016, JCI insight,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
October 2020, Experimental and therapeutic medicine,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
September 2018, Immunology and cell biology,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
January 2020, Frontiers in immunology,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
November 2011, Immunotherapy,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
February 2019, Transfusion,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
May 2018, Scientific reports,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
June 2023, Diabetes,
Chie Hotta-Iwamura, and Charles Benck, and William D Coley, and Yi Liu, and Yongge Zhao, and Juan A Quiel, and Kristin V Tarbell
October 2017, JCI insight,
Copied contents to your clipboard!