Relationships between the biomechanical properties, composition and molecular structure of connective tissues. 1986

H Oxlund

Biomechanical, biochemical and morphological methods have been used in combination as analytical tools in the study of normal and pathological tissue functions. The biochemical studies described have been performed in vitro on whole tissue preparations and on individual components of connective tissues. Enzymatic degradation has been used to selectively remove components from the tissues. Collagen is the main load-bearing component in muscle tendon and skin. The mechanical properties of the aorta appear to depend on an interaction between collagen and elastin. Membranes of purified, reconstituted collagen type I itself exhibits the visco-elastic behavior which is characteristic for tissues like muscle tendon and skin. Applicability of the methods is shown in two examples: The strength of skin samples from patients with osteogenesis imperfecta was found to be reduced, and the skin from the patients with the lowest strength contained the highest proportions of collagen type III. Moreover, the stability of molecular collagen type I was decreased. In samples of the intracranial arteria cerebri media obtained at autopsy from patients with rupture of intracranial aneurysms the wall thickness, dry defatted weight and ratio collagen type I/type III were increased. The diameter of the arteries was reduced.

UI MeSH Term Description Entries
D010013 Osteogenesis Imperfecta COLLAGEN DISEASES characterized by brittle, osteoporotic, and easily fractured bones. It may also present with blue sclerae, loose joints, and imperfect dentin formation. Most types are autosomal dominant and are associated with mutations in COLLAGEN TYPE I. Fragilitas Ossium,Lobstein Disease,Brittle Bone Disease,Lobstein's Disease,Osteogenesis Imperfecta Tarda,Osteogenesis Imperfecta with Blue Sclerae,Osteogenesis Imperfecta, Type 1,Osteogenesis Imperfecta, Type I,Disease, Lobstein,Disease, Lobstein's,Lobsteins Disease,Ossiums, Fragilitas,Osteogenesis Imperfecta Tardas
D002532 Intracranial Aneurysm Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841) Aneurysm, Cerebral,Aneurysm, Intracranial,Basilar Artery Aneurysm,Berry Aneurysm,Brain Aneurysm,Cerebral Aneurysm,Giant Intracranial Aneurysm,Mycotic Aneurysm, Intracranial,Aneurysm, Anterior Cerebral Artery,Aneurysm, Anterior Communicating Artery,Aneurysm, Basilar Artery,Aneurysm, Middle Cerebral Artery,Aneurysm, Posterior Cerebral Artery,Aneurysm, Posterior Communicating Artery,Anterior Cerebral Artery Aneurysm,Anterior Communicating Artery Aneurysm,Middle Cerebral Artery Aneurysm,Posterior Cerebral Artery Aneurysm,Posterior Communicating Artery Aneurysm,Aneurysm, Berry,Aneurysm, Brain,Aneurysm, Giant Intracranial,Aneurysm, Intracranial Mycotic,Aneurysms, Basilar Artery,Aneurysms, Berry,Aneurysms, Brain,Aneurysms, Cerebral,Aneurysms, Giant Intracranial,Aneurysms, Intracranial,Aneurysms, Intracranial Mycotic,Artery Aneurysm, Basilar,Artery Aneurysms, Basilar,Basilar Artery Aneurysms,Berry Aneurysms,Brain Aneurysms,Cerebral Aneurysms,Giant Intracranial Aneurysms,Intracranial Aneurysm, Giant,Intracranial Aneurysms,Intracranial Aneurysms, Giant,Intracranial Mycotic Aneurysm,Intracranial Mycotic Aneurysms,Mycotic Aneurysms, Intracranial
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001011 Aorta The main trunk of the systemic arteries. Aortas
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D012879 Skin Physiological Phenomena The functions of the skin in the human and animal body. It includes the pigmentation of the skin. Skin Physiological Processes,Skin Physiology,Physiology, Skin,Skin Physiological Concepts,Skin Physiological Phenomenon,Skin Physiological Process,Concept, Skin Physiological,Concepts, Skin Physiological,Phenomena, Skin Physiological,Phenomenas, Skin Physiological,Phenomenon, Skin Physiological,Phenomenons, Skin Physiological,Physiological Concept, Skin,Physiological Concepts, Skin,Physiological Phenomena, Skin,Physiological Phenomenas, Skin,Physiological Phenomenon, Skin,Physiological Phenomenons, Skin,Process, Skin Physiological,Processes, Skin Physiological,Skin Physiological Concept,Skin Physiological Phenomenas,Skin Physiological Phenomenons
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013710 Tendons Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures. Endotenon,Epotenon,Tendons, Para-Articular,Tendons, Paraarticular,Endotenons,Epotenons,Para-Articular Tendon,Para-Articular Tendons,Paraarticular Tendon,Paraarticular Tendons,Tendon,Tendon, Para-Articular,Tendon, Paraarticular,Tendons, Para Articular

Related Publications

H Oxlund
October 2006, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences,
H Oxlund
January 1978, Verhandlungen der Anatomischen Gesellschaft,
H Oxlund
January 2022, Frontiers in bioengineering and biotechnology,
Copied contents to your clipboard!