Familial Hypercholesterolemia: Cascade Screening in Children and Relatives of the Affected. 2018

Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060, India. nitikasetia@gmail.com.

OBJECTIVE Familial Hypercholesterolemia (FH) is an inherited disorder of lipid metabolism characterized by very high low density lipoprotein (LDL) cholesterol since birth, resulting in premature atherosclerosis and coronary artery disease (CAD). Cascade screening of children and family members of proven FH individuals can identify more subjects who have high LDL cholesterol or the family mutation and appropriate intervention can reduce their risk of atherosclerosis and prevent its complications. METHODS Cascade screening by molecular testing, was carried out in 133 family members, comprising 24 children, of 31 probands with FH having a pathogenic mutation in LDLR/ApoB gene. Lipid profiles were obtained in 44 family members including 11 children. RESULTS Of 133 family members tested, 88 (66.1%) were identified to carry the family mutation. Twelve of these were children below 18 y of age and 76 were adults. CAD was present in 15 (11.2%) family members and 63(47.4%) family members, including nine children, were already on Lipid Lowering Therapy. CONCLUSIONS Cascade screening led to identification of 88 new cases, with a pathogenic mutation, who were at a very high risk of developing premature CAD. The authors identified 12 children with family specific mutation, out of which 9 were initiated on low dose statin therapy. Four homozygous children were treated with high dose statins because of substantially increased risk of CAD. Cascade screening, therefore, proved to be a successful initiative towards primary prevention of CAD in India.

UI MeSH Term Description Entries
D007194 India A country in southern Asia, bordering the Arabian Sea and the Bay of Bengal, between Burma and Pakistan. The capitol is New Delhi. Republic of India
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005260 Female Females
D005820 Genetic Testing Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing. Genetic Predisposition Testing,Genetic Screening,Predictive Genetic Testing,Predictive Testing, Genetic,Testing, Genetic Predisposition,Genetic Predictive Testing,Genetic Screenings,Genetic Testing, Predictive,Predisposition Testing, Genetic,Screening, Genetic,Screenings, Genetic,Testing, Genetic,Testing, Genetic Predictive,Testing, Predictive Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic
D000071449 Proprotein Convertase 9 A proprotein convertase that is essential for CHOLESTEROL homeostasis. It binds to and is required for the lysosomal degradation of the LDL RECEPTOR (LDLR); the VLDL receptor, and the APOLIPOPROTEIN E RECEPTOR. It also regulates neuronal APOPTOSIS. NARC-1 Protein,Neural Apoptosis-Regulated Convertase 1,Proprotein Convertase, Subtilisin-Kexin Type 9,Convertase 9, Proprotein,NARC 1 Protein,Neural Apoptosis Regulated Convertase 1,Proprotein Convertase, Subtilisin Kexin Type 9

Related Publications

Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
June 2017, Journal of the American Heart Association,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
August 2020, Journal of pediatric endocrinology & metabolism : JPEM,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
April 2022, Lakartidningen,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
January 2019, Journal of pediatric nursing,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
December 2004, Clinical genetics,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
May 2011, PLoS currents,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
May 2018, Endocrinologia, diabetes y nutricion,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
January 2015, Journal of atherosclerosis and thrombosis,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
January 2015, The Journal of cardiovascular nursing,
Nitika Setia, and Renu Saxena, and J P S Sawhney, and Ishwar C Verma
November 2017, Atherosclerosis. Supplements,
Copied contents to your clipboard!