Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. 2018

Imran Shair Mohammad, and Wei He, and Lifang Yin
Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, 210009, PR China.

Indeed, multi-drug resistance (MDR) is a significant obstacle to effective chemotherapy. The overexpression of ATP-binding cassette (ABC) membrane transporters is a principal cause of enhanced cytotoxic drug efflux and treatment failure in various types of cancers. At cellular level, the pumps of ABC family regulate the transportation of numerous substances including drugs in and out of the cells. In past, the overexpression of ABC pumps suggested a well-known mechanism of drug resistance in cancers as well as infectious diseases. In oncology, the search for new compounds for the inhibition of these hyperactive ABC pumps either genetically or functionally, growing interest to reverse multi-drug resistance and increase chemotherapeutic effects. Several ABC pump inhibitor/modulators has been explored to address the cancer associated MDR. However, the clinical results are still disappointing and conventional chemotherapies are constantly failed in successful eradication of MDR tumors. In this context, the structural and functional understanding of different ATP pumps is most important. In this concise review, we elaborated basic crystal structure of ABC transporter proteins as well as its critical elements such as different domains, motifs as well as some important amino acids which are responsible for ATP binding and drug efflux as well as demonstrated an ATP-switch model employed by various ABC membrane transporters. Furthermore, we briefly summarized different newly identified MDR inhibitors/modulators, deployed alone or in combination with cytotoxic agents to deal with MDR in different types of cancers.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D018432 Drug Resistance, Multiple Simultaneous resistance to several structurally and functionally distinct drugs. Drug Resistance, Extensively,Extensively Drug Resistance,Extensively-Drug Resistance,Multidrug Resistance,Multi-Drug Resistance,Extensively Drug Resistances,Extensively-Drug Resistances,Multiple Drug Resistance,Resistance, Extensively Drug,Resistance, Extensively-Drug,Resistance, Multiple Drug
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug

Related Publications

Imran Shair Mohammad, and Wei He, and Lifang Yin
January 2004, Current medicinal chemistry. Anti-cancer agents,
Imran Shair Mohammad, and Wei He, and Lifang Yin
January 2004, Current medicinal chemistry. Anti-cancer agents,
Imran Shair Mohammad, and Wei He, and Lifang Yin
June 2000, Clinical cancer research : an official journal of the American Association for Cancer Research,
Imran Shair Mohammad, and Wei He, and Lifang Yin
April 1997, Molecular & general genetics : MGG,
Imran Shair Mohammad, and Wei He, and Lifang Yin
July 2001, Genome research,
Imran Shair Mohammad, and Wei He, and Lifang Yin
July 2001, Journal of lipid research,
Imran Shair Mohammad, and Wei He, and Lifang Yin
September 2022, Human mutation,
Imran Shair Mohammad, and Wei He, and Lifang Yin
January 2012, Annual review of microbiology,
Imran Shair Mohammad, and Wei He, and Lifang Yin
March 2024, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy,
Copied contents to your clipboard!