Nonlinear increase of elongation rate of actin filaments with actin monomer concentration. 1986

T Keiser, and A Schiller, and A Wegner

The nonlinear increase of the elongation rate of actin filaments above the critical monomer concentration was investigated by nucleated polymerization of actin. Significant deviations from linearity were observed when actin was polymerized in the presence of magnesium ions. When magnesium ions were replaced by potassium or calcium ions, no deviations from linearity could be detected. The nonlinearity was analyzed by two simple assembly mechanisms. In the first model, if the ATP hydrolysis by polymeric actin is approximately as fast as the incorporation of monomers into filaments, terminal subunits of lengthening filaments are expected to carry to some extent ADP. As ADP-containing subunits dissociate from the ends of actin filaments faster than ATP-containing subunits, the rate of elongation of actin filaments would be nonlinearly correlated with the monomer concentration. In the second model (conformational change model), actin monomers and filament subunits were assumed to occur in two conformations. The association and dissociation rates of actin molecules in the two conformations were thought to be different. The equilibrium distribution between the two conformations was assumed to be different for monomers and filament subunits. The ATP hydrolysis was thought to lag behind polymerization and conformational change. As under the experimental conditions the rate of ATP hydrolysis by polymeric actin was independent of the concentration of filament ends, the observed nonlinear increase of the rate of elongation with the monomer concentration above the critical monomer concentration was unlikely to be caused by ATP hydrolysis at the terminal subunits. The conformational change model turned out to be the simplest assembly mechanism by which all available experimental data could be explained.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

T Keiser, and A Schiller, and A Wegner
December 2020, Proceedings of the National Academy of Sciences of the United States of America,
T Keiser, and A Schiller, and A Wegner
September 1988, Biochemistry,
T Keiser, and A Schiller, and A Wegner
February 1986, Journal of molecular biology,
T Keiser, and A Schiller, and A Wegner
May 2009, The Journal of biological chemistry,
T Keiser, and A Schiller, and A Wegner
May 2010, The Journal of cell biology,
T Keiser, and A Schiller, and A Wegner
December 1988, Biochemistry,
T Keiser, and A Schiller, and A Wegner
November 1991, Biochemistry,
T Keiser, and A Schiller, and A Wegner
January 1976, Journal of supramolecular structure,
Copied contents to your clipboard!