Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis. 2018

S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Endothelial cells (ECs) and macrophages engage in tight and specific interactions that play critical roles in cardiovascular homeostasis and the pathogenesis of atherosclerosis. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes or shed from the surfaces of the membranes of most cell types. Increasing evidence indicates that EVs play a pivotal role in cell-to-cell communication. However, the contribution of EVs, as determine by oxidized low-density lipoprotein (ox-LDL)-exposed and/or Kruppel-like factor 2 (KLF2)-transduced ECs in the interaction between vascular ECs and monocytes/macrophages, which is a key event in atherosclerotic plaque development, has remained elusive. This study demonstrates the characteristic impact of EVs from ox-LDL-treated and/or KLF2-transduced ECs on the monocyte/macrophage phenotype in vitro and in vivo.Q-PCR showed that both the atherosclerosis inducer ox-LDL and atheroprotective factor KLF2 regulated inflammation-associated microRNA-155 (miR-155) expression in human umbilical vein endothelial cells (HUVECs). Moreover, coculture, immunofluorescence and flow cytometry revealed that miR-155 was enriched in ox-LDL-induced ECs-EVs and subsequently transferred to human monocytic THP1 cells, in which these vesicles enhance monocyte activation by shifting the monocytes/macrophages balance from anti-inflammatory M2 macrophages towards proinflammatory M1 macrophages; EVs from KLF2-expressing ECs suppressed monocyte activation by enhancing immunomodulatory responses and diminishing proinflammatory responses, which indicate the potent anti-inflammatory activities of these cells. Furthermore, oil red staining showed that atherosclerotic lesions were reduced in mice that received EVs from KLF2-transduced ECs with decreased proinflammatory M1 macrophages and increased anti-inflammatory M2 macrophages, and this effect is at least partly due to the decreased expression of inflammation-associated miR-155, confirming our in vitro findings. In summary, this study provides novel insights into the pathophysiological effects of altered EV secretion and/or microRNA content and their influence on modulating monocyte activation depending on the environment surrounding EVs-releasing ECs.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067128 Extracellular Vesicles Membrane limited structures derived from cell membranes and cytoplasmic material, and released into EXTRACELLULAR SPACE. They circulate through the EXTRACELLULAR FLUID and through the peripheral blood in the MICROVASCULATURE where cells, much larger, cannot, thereby affecting a variety of intercellular communication processes. Apoptotic Bodies,Exovesicles,Apoptotic Body,Bodies, Apoptotic,Body, Apoptotic,Exovesicle,Extracellular Vesicle,Vesicle, Extracellular,Vesicles, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050197 Atherosclerosis A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA. Atherogenesis,Atherogeneses,Atheroscleroses

Related Publications

S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
November 2023, European journal of medical research,
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
December 2023, European journal of medical research,
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
January 2022, Journal of leukocyte biology,
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
April 2010, Infection and immunity,
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
November 2021, Journal of leukocyte biology,
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
January 2018, Frontiers in immunology,
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
May 2023, Journal of fungi (Basel, Switzerland),
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
August 2019, Clinica chimica acta; international journal of clinical chemistry,
S He, and C Wu, and J Xiao, and D Li, and Z Sun, and M Li
January 2022, BMC cancer,
Copied contents to your clipboard!