Degradation of muscle basement membrane zone by locally generated plasmin. 1987

D Hantaï, and B W Festoff

The turnover of basement membrane macromolecules in injured skeletal muscle has not been studied in contrast to other biologic systems undergoing remodeling. Plasminogen activators and other neutral proteases that are able to degrade these basement membrane macromolecules are secreted by cultured muscle cells. We sought to determine if locally released plasminogen activators could act on basement membrane components. Such degradation might be implicated in the disadhesion of nerve from muscle after motor nerve denervation. To test this hypothesis, we first undertook a study of the sensitivity of muscle extracellular matrix antigens following in vitro exposure to various proteases on frozen muscle sections. Fibronectin was found to be most sensitive, followed by type IV collagen and laminin. Of serine proteases, trypsin was the most active but was not selective, digesting matrix and sarcoplasmic components alike in less than 30 min. Purified urokinase was inactive unless plasminogen (also inactive alone) was previously added to tissue sections, at which time only matrix antigens were digested. Little if any observable degradation of sarcoplasmic proteins took place under these conditions. Using a highly sensitive and selective assay, we found that plasminogen activators were present in muscle tissue and increased 8- to 10-fold after 10 days of denervation. Using an extract of denervated muscle in the presence of plasminogen, we observed degradation of matrix antigens. No degradation was observed with control muscle extract. We next evaluated the degradation of these antigens in denervated muscle during a temporal study. The results, analyzed by quantitative image analysis, indicates that with increasing time after denervation a marked decrease of fibronectin and type IV collagen, followed by laminin occurred but, again, only in the present of plasminogen. These results indicate a selective sensitivity of basement membrane antigens of muscle and a role for plasminogen activators in the degradation of these adhesive basement membranes macromolecules after denervation.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010958 Plasminogen Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent. Profibrinolysin,Glu-Plasminogen,Glutamic Acid 1-Plasminogen,Glutamyl Plasminogen,1-Plasminogen, Glutamic Acid,Glu Plasminogen,Glutamic Acid 1 Plasminogen,Plasminogen, Glutamyl
D010960 Plasminogen Activators A heterogeneous group of proteolytic enzymes that convert PLASMINOGEN to FIBRINOLYSIN. They are concentrated in the lysosomes of most cells and in the vascular endothelium, particularly in the vessels of the microcirculation. Extrinsic Plasminogen Activators,Plasminogen Activator,Uterine-Tissue Plasminogen Activator,Uterine Tissue Plasminogen Activator
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen

Related Publications

D Hantaï, and B W Festoff
January 1985, Journal of biomedical materials research,
D Hantaï, and B W Festoff
January 1996, Clinics in dermatology,
D Hantaï, and B W Festoff
January 1987, Advances in dermatology,
D Hantaï, and B W Festoff
December 2012, Physical biology,
D Hantaï, and B W Festoff
October 1985, Nihon Hifuka Gakkai zasshi. The Japanese journal of dermatology,
D Hantaï, and B W Festoff
May 1977, Journal of the National Cancer Institute,
D Hantaï, and B W Festoff
January 1999, The Journal of surgical research,
D Hantaï, and B W Festoff
July 1983, Science (New York, N.Y.),
D Hantaï, and B W Festoff
September 1997, The Journal of pathology,
D Hantaï, and B W Festoff
December 1982, Nihon Hifuka Gakkai zasshi. The Japanese journal of dermatology,
Copied contents to your clipboard!