Mutations of bacteriophage lambda that define independent but overlapping RNA processing and transcription termination sites. 1986

C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros

Bacteriophage lambda int gene expression is regulated differentially from transcripts originated at the pL and pI promoters. Transcripts initiated at pI terminate at the site tI and express int gene product efficiently. Polymerases starting at pL do not terminate at tI, due to the antiterminating activity of lambda N protein. The pL transcripts are unable to express Int protein efficiently because sib, a control site overlapping tI in the unterminated RNA, is processed by host RNase III. We have isolated lambda sib- mutants by their inability to inhibit int expression from pL transcripts. sib mutations were genetically mapped to the left of the lambda attachment site, and do not structurally alter this site for recombination. Several sib mutations do alter the nucleotide sequence of the overlapping sib and tI sites. The lambda sib- mutants tested prevent RNA processing but do not affect transcription termination in vivo.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D001287 Attachment Sites, Microbiological Specific loci on both the bacterial DNA (attB) and the phage DNA (attP) which delineate the sites where recombination takes place between them, as the phage DNA becomes integrated (inserted) into the BACTERIAL DNA during LYSOGENY. Attachment Sites (Microbiology),Bacterial Attachment Sites,Phage Attachment Sites,Att Attachment Sites,AttB Attachment Sites,AttP Attachment Sites,Attachment Site (Microbiology),Attachment Site, Bacterial,Attachment Sites, Bacterial,Bacterial Attachment Site,Microbiologic Attachment Site,Microbiologic Attachment Sites,Att Attachment Site,AttB Attachment Site,AttP Attachment Site,Attachment Site, Att,Attachment Site, AttB,Attachment Site, AttP,Attachment Site, Microbiologic,Attachment Site, Microbiological,Attachment Site, Phage,Attachment Sites, Att,Attachment Sites, AttB,Attachment Sites, AttP,Attachment Sites, Microbiologic,Attachment Sites, Phage,Microbiological Attachment Site,Microbiological Attachment Sites,Phage Attachment Site
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013728 Terminator Regions, Genetic DNA sequences recognized as signals to end GENETIC TRANSCRIPTION. Terminator Sequence,Transcriptional Terminator Regions,Terminator Regions,Genetic Terminator Region,Genetic Terminator Regions,Region, Genetic Terminator,Region, Terminator,Region, Transcriptional Terminator,Regions, Genetic Terminator,Regions, Terminator,Regions, Transcriptional Terminator,Sequence, Terminator,Sequences, Terminator,Terminator Region,Terminator Region, Genetic,Terminator Region, Transcriptional,Terminator Regions, Transcriptional,Terminator Sequences,Transcriptional Terminator Region

Related Publications

C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
May 1986, Journal of molecular biology,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
November 1996, Gene,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
January 2003, Methods in enzymology,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
January 1983, Molecular & general genetics : MGG,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
August 1983, The Journal of biological chemistry,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
April 1977, Nucleic acids research,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
March 1990, The Journal of biological chemistry,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
December 1988, Virology,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
April 1980, Journal of molecular biology,
C Montañez, and J Bueno, and U Schmeissner, and D L Court, and G Guarneros
December 1997, Canadian journal of microbiology,
Copied contents to your clipboard!