Cytocontractile structures and proteins of smooth muscle cells during the formation of experimental lesions. 1987

J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild

The time course of structural changes in vascular smooth muscle cells (SMC) was investigated during the formation of an experimental lesion in response to balloon injury. We compared the filamentous organization, evaluated by quantitative electron microscopy, with the cellular content of two representative cytocontractile proteins (myosin and tropomyosin) as assessed by immunofluorescence. We found that the changes peak between 7 and 14 days after injury and that they are visible both in the neointima and to a lesser extent in the inner media. While virtually all SMC are of a filament-rich phenotype in the undisturbed media, after balloon injury SMC migrated into the intima and about 90% of these latter cells were either of a organelle-rich or an intermediate phenotype, with the remaining 10% being of the filament-rich phenotype. In the inner media about 40% of cells were either of organelle-rich or intermediate phenotype. In contrast to these profound organizational changes of responding SMC, histochemistry revealed only a slight and probably transient decrease of the cellular content of myosin and tropomyosin at that time point. Twenty-eight days after injury the discrepancies between the content and the organization of cytocontractile proteins became more apparent. While virtually all SMC showed a homogeneous intensive staining with both antibodies, indistinguishable from the media SMC, the organization of cytoplasmic filaments had not totally recovered. Even though this morphological study does not permit conclusions to be drawn on the contractile function of the cells, it shows that both the organization and the content of cytocontractile protein have to be analyzed and compared for SMC changes to be evaluated during the formation of an experimental lesion.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000800 Angioplasty, Balloon Use of a balloon catheter for dilation of an occluded artery. It is used in treatment of arterial occlusive diseases, including renal artery stenosis and arterial occlusions in the leg. For the specific technique of BALLOON DILATION in coronary arteries, ANGIOPLASTY, BALLOON, CORONARY is available. Balloon Angioplasty,Dilation, Transluminal Arterial,Arterial Dilation, Transluminal,Arterial Dilations, Transluminal,Dilations, Transluminal Arterial,Transluminal Arterial Dilation,Transluminal Arterial Dilations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014335 Tropomyosin A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN. Paramyosin,Miniparamyosin,Paratropomyosin,Tropomyosin Mg,alpha-Tropomyosin,beta-Tropomyosin,gamma-Tropomyosin,Mg, Tropomyosin,alpha Tropomyosin,beta Tropomyosin,gamma Tropomyosin

Related Publications

J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
September 1990, Differentiation; research in biological diversity,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
August 1993, Experimental cell research,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
January 1989, Zentralblatt fur allgemeine Pathologie u. pathologische Anatomie,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
June 1992, Kidney international. Supplement,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
March 1999, Journal of neuroradiology = Journal de neuroradiologie,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
January 1993, British heart journal,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
March 1971, The American journal of pathology,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
January 1988, Prikladnaia biokhimiia i mikrobiologiia,
J Grünwald, and J Fingerle, and H Hämmerle, and E Betz, and C C Haudenschild
January 1995, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!