Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. 1986

M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles

The filamentous fungus Trichoderma reesei produces several endoglucanases (EG) and cellobiohydrolases (CBH) which are involved in cellulose hydrolysis in a complex synergistic manner. We have cloned and sequenced the gene and the full-length cDNA coding for the major endoglucanase EG-I, and compared this to the cbh1 gene sequence to clarify the relationship between the EG and CBH classes of cellulases. The deduced 437-amino acids (aa) long EG-I protein with a 22-aa long signal peptide is 45% identical in aa sequence with CBH-I. The best conserved region is found at the C terminus and shows about 70% homology. The data suggest that the two enzymes have arisen from a common ancestor by gene duplication. Despite this, the intron positions have not been conserved in these genes which both contain two short introns. The deduced EG-I sequence contains six putative N-glycosylation sites, and a putative O-glycosylated region is found near the C terminus, closely resembling a similar region at the C terminus of CBH-I. Comparison of the aa sequences suggests that the evolutionary divergence of EG-I from CBH-I has involved four separate 10-20 aa "deletions" from the ancestral protein.

UI MeSH Term Description Entries
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D002480 Cellulase An endocellulase with specificity for the hydrolysis of 1,4-beta-glucosidic linkages in CELLULOSE, lichenin, and cereal beta-glucans. Endo-1,4-beta-Glucanase,Cellulysin,Endoglucanase,Endoglucanase A,Endoglucanase C,Endoglucanase E,Endoglucanase IV,Endoglucanase Y,beta-1,4-Glucan-4-Glucanohydrolase,Endo 1,4 beta Glucanase,beta 1,4 Glucan 4 Glucanohydrolase
D003904 Mitosporic Fungi A large and heterogenous group of fungi whose common characteristic is the absence of a sexual state. Many of the pathogenic fungi in humans belong to this group. Deuteromycetes,Deuteromycota,Fungi imperfecti,Fungi, Mitosporic,Hyphomycetes,Deuteromycete,Deuteromycotas,Fungi imperfectus,Fungus, Mitosporic,Hyphomycete,Mitosporic Fungus,imperfectus, Fungi
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001230 Aspergillus A genus of mitosporic fungi containing about 100 species and eleven different teleomorphs in the family Trichocomaceae.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
July 1996, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
December 1993, Molecular & general genetics : MGG,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
September 1996, Biochemistry,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
November 2006, Biotechnology journal,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
January 2021, Bioresource technology,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
November 1986, Nucleic acids research,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
August 2015, Genome announcements,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
August 1995, Biochemistry,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
October 1992, The Biochemical journal,
M Penttilä, and P Lehtovaara, and H Nevalainen, and R Bhikhabhai, and J Knowles
May 2015, Protein engineering, design & selection : PEDS,
Copied contents to your clipboard!