Heparan sulfate proteoglycans of human lung fibroblasts. Structural heterogeneity of the core proteins of the hydrophobic cell-associated forms. 1987

V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe

Heparan sulfate proteoglycans (HSPG) were solubilized from human lung fibroblast monolayers with detergent. Presumptive membrane-associated forms displaying hydrophobic properties were purified by gel filtration on Sepharose CL-4B, by ion-exchange chromatography on Mono Q and by incorporation in lipid vesicles. The HSPG preparations were 125I-iodinated and treated with heparitinase before sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Five radiolabeled proteins with apparent molecular weights of 125,000, 90,000, 64,000, 48,000, and 35,000 were visualized by autoradiography. A sixth protein, identified in nonreduced 125I-HSPG preparations, appeared as a non-HS chain-bearing Mr 35,000 peptide which was disulfide-linked to an HS chain-bearing peptide of similar size. This multiplicity of core proteins did not seem to result from proteolysis during the heparitinase treatment itself, since some of the core proteins migrated independently during gel filtration before heparitinase digestion. Moreover, heparitinase digestion of 125I-HSPG purified by affinity chromatography on an immobilized monoclonal antibody yielded only the Mr 64,000 protein. Alternative depolymerizations of the HS chains by heparinase or HNO2 also yielded multiple protein bands. These results imply that heterogeneity of the core protein moiety may be a genuine property of the hydrophobic HSPG of human lung fibroblasts. The occurrence of multiple integral membrane HSPG forms may be relevant for the multiple functions that have been ascribed to cell-surface HSPG.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011133 Polysaccharide-Lyases A group of carbon-oxygen lyases. These enzymes catalyze the breakage of a carbon-oxygen bond in polysaccharides leading to an unsaturated product and the elimination of an alcohol. EC 4.2.2. Polysaccharide Lyase,Polysaccharide-Lyase,Lyase, Polysaccharide,Polysaccharide Lyases
D011508 Chondroitin Sulfate Proteoglycans Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains. Proteochondroitin Sulfates,Chondroitin Sulfate Proteoglycan,Proteochondroitin Sulfate,Proteoglycan, Chondroitin Sulfate,Proteoglycans, Chondroitin Sulfate,Sulfate Proteoglycan, Chondroitin,Sulfate Proteoglycans, Chondroitin
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast

Related Publications

V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
July 1986, European journal of biochemistry,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
April 1989, The Journal of biological chemistry,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
March 1989, The Journal of cell biology,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
January 1992, The Journal of biological chemistry,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
May 1992, The Journal of biological chemistry,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
January 2003, Annual review of genetics,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
October 1990, Biochemical Society transactions,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
March 1989, Journal of neurochemistry,
V Lories, and H De Boeck, and G David, and J J Cassiman, and H Van den Berghe
January 1992, Advances in experimental medicine and biology,
Copied contents to your clipboard!