Retinoic acid enhances germ cell differentiation of mouse skin-derived stem cells. 2018

Paul W Dyce, and Neil Tenn, and Gerald M Kidder
Department of Animal Sciences, College of Agriculture, Auburn University, CASIC Building, 559 Devall Drive, Auburn, AL, 36849, USA. pwd0003@auburn.edu.

BACKGROUND Retinoic acid (RA) signaling has been identified as a key driver in male and female gamete development. The presence of RA is a critical step in the initiation of meiosis and is required for the production of competent oocytes from primordial germ cells. Meiosis has been identified as a difficult biological process to recapitulate in vitro, when differentiating stem cells to germ cells. We have previously shown that primordial germ cell-like cells, and more advanced oocyte-like cells (OLCs), can be formed by differentiating mouse skin-derived stem cells. However, the OLCs remain unable to function due to what appears to be failure of meiotic initiation. The aim of this study was to determine the effect of RA treatment, during stem cell differentiation to germ cells, particularly on the initiation of meiosis. RESULTS Using qPCR we found significant increases in the meiosis markers Stra8 and Sycp3 and a significant reduction in the meiosis inhibitor Nanos2, in the differentiating populations. Furthermore, OLCs from the RA treated group, expressed significantly more of the meiosis regulatory gene Marf1 and the oocyte marker Oct4. At the protein level RA treatment was found to increase the expression of the gap junction protein CX43 and the pluripotency marker OCT4. Moreover, the expression of SYCP3 was significantly upregulated and the localization pattern better matched that of control fetal ovarian cells. RA treatment also improved the structural integrity of the OLCs produced by initiating the expression of all three zona pellucida transcripts (Zp1-3) and improving ZP3 expression levels and localization. Finally, the addition of RA during differentiation led to an almost two-fold increase in the number of OLCs recovered and increased their in vitro growth. CONCLUSIONS RA is a key driver in the formation of functioning gametes and its addition during stem cell to germ cell differentiation improves OLCs entry into meiosis.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005260 Female Females
D005854 Germ Cells The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS. Gamete,Gametes,Germ-Line Cells,Germ Line,Cell, Germ,Cell, Germ-Line,Cells, Germ,Cells, Germ-Line,Germ Cell,Germ Line Cells,Germ Lines,Germ-Line Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D015044 Zona Pellucida A tough transparent membrane surrounding the OVUM. It is penetrated by the sperm during FERTILIZATION.
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune

Related Publications

Paul W Dyce, and Neil Tenn, and Gerald M Kidder
November 2013, Iranian journal of reproductive medicine,
Paul W Dyce, and Neil Tenn, and Gerald M Kidder
February 2012, Biochemical and biophysical research communications,
Paul W Dyce, and Neil Tenn, and Gerald M Kidder
July 2013, Journal of visualized experiments : JoVE,
Paul W Dyce, and Neil Tenn, and Gerald M Kidder
January 2017, Translational vision science & technology,
Paul W Dyce, and Neil Tenn, and Gerald M Kidder
June 1997, Journal of molecular and cellular cardiology,
Paul W Dyce, and Neil Tenn, and Gerald M Kidder
November 2012, Reproductive toxicology (Elmsford, N.Y.),
Paul W Dyce, and Neil Tenn, and Gerald M Kidder
December 2023, Theriogenology,
Copied contents to your clipboard!