Interaction in vivo between hapten-specific suppressor T cells and an in vitro cultured helper T cell line. 1987

T Owens, and J F Miller

The interaction in vivo between hapten-specific suppressor T cells (Ts) and a hapten-specific T helper (Th) cell line was examined. Antigen-specific Ts were induced in CBA mice by i.v. priming with 3 X 10(7) syngeneic spleen cells (SC) that were chemically coupled with the hapten azobenzenearsonate (ABA). Transfer of splenic T cells from these mice by i.v. injection suppressed the induction in syngeneic assay hosts of ABA-reactive helper and cytotoxic T cell (Tc) responses. Although the Th responses and their suppression were ABA specific, in that they were not induced or activated by trinitrophenyl (TNP)-coupled SC, both Tc responses and their suppression were occasionally nonspecific. Induction of Th was assayed by measuring the release from primed lymph node cells of IL 2 and IL 3 in response to haptenated SC in vitro. Both cytotoxic and Th responses could be made dependent on the provision of exogenous Th by reducing the antigen dose. This stratagem allowed the assay in vivo of a long-term cultured ABA-specific Th cell line (E9). Injection of 10(5) E9 cells/mouse (with antigen, in the rear footpad) helped the induction of both Tc and Th in response to a reduced dose of antigen. These responses, which were dependent on the E9 cell line, were also suppressed by i.v. transferred Ts. When normal doses of antigen were used, the injection of 10(5) E9 Th overcame suppression. These results show that Ts act by inhibiting the activation of Th, thereby suppressing Th-dependent responses generally. The fact that the E9 Th cell line could be suppressed also shows that long-term culture of T cells does not affect their capacity to be regulated in vivo.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D008211 Lymphocyte Cooperation T-cell enhancement of the B-cell response to thymic-dependent antigens. Cooperation, Lymphocyte,Cooperations, Lymphocyte,Lymphocyte Cooperations
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D006241 Haptens Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response. Hapten,Contact-Sensitizing Agents,Agents, Contact-Sensitizing,Contact Sensitizing Agents
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Owens, and J F Miller
October 1984, Scandinavian journal of immunology,
T Owens, and J F Miller
January 1980, Annales d'immunologie,
T Owens, and J F Miller
September 1982, Journal of immunology (Baltimore, Md. : 1950),
T Owens, and J F Miller
April 1979, Journal of immunology (Baltimore, Md. : 1950),
T Owens, and J F Miller
March 1982, European journal of immunology,
Copied contents to your clipboard!