Measurement of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging with reduced scan time. 2018

Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York.

To investigate the feasibility of measuring the subtle disruption of blood-brain barrier (BBB) using DCE-MRI with a scan duration shorter than 10 min. The extended Patlak-model (EPM) was introduced to include the effect of plasma flow (Fp ) in the estimation of vascular permeability-surface area product (PS). Numerical simulation studies were carried out to investigate how the reduction in scan time affects the accuracy in estimating contrast kinetic parameters. DCE-MRI studies of the rat brain were conducted with Fisher rats to confirm the results from the simulation. Intracranial F98 glioblastoma models were used to assess areas with different levels of permeability. In the normal brain tissues, the Patlak model (PM) and EPM were compared, whereas the 2-compartment-exchange-model (TCM) and EPM were assessed in the peri-tumor and the tumor regions. The simulation study results demonstrated that scan time reduction could lead to larger bias in PS estimated by PM (>2000%) than by EPM (<47%), especially when Fp is low. When Fp was high as in the gray matter, the bias in PM-PS (>900%) were larger than that in EPM-PS (<42%). The animal study also showed similar results, where the PM parameters were more sensitive to the scan duration than the EPM parameters. It was also demonstrated that, in the peri-tumor region, the EPM parameters showed less change by scan duration than the TCM parameters. The results of this study suggest that EPM can be used to measure PS with a scan duration of 10 min or less.

UI MeSH Term Description Entries
D007090 Image Interpretation, Computer-Assisted Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease. Image Interpretation, Computer Assisted,Computer-Assisted Image Interpretation,Computer-Assisted Image Interpretations,Image Interpretations, Computer-Assisted,Interpretation, Computer-Assisted Image,Interpretations, Computer-Assisted Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque
D005260 Female Females
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas

Related Publications

Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
February 2019, The Journal of physiology,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
April 2021, NeuroImage,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
September 2023, NeuroImage,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
April 2011, Magnetic resonance in medicine,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
May 2019, Epilepsia,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
December 2001, Biotechnology and bioengineering,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
September 1992, Magnetic resonance in medicine,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
December 2011, The Journal of trauma,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
May 2017, Scientific reports,
Jonghyun Bae, and Jin Zhang, and Youssef Zaim Wadghiri, and Atul Singh Minhas, and Harish Poptani, and Yulin Ge, and Sungheon Gene Kim
June 2014, Neuroradiology,
Copied contents to your clipboard!