Electrophysiological properties of cultured dorsal root ganglion and spinal cord neurons of normal and trisomy 16 fetal mice. 1987

C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport

Dorsal root ganglion (DRG) and spinal cord neurons from normal and trisomy 16 fetal mice, an animal model for human trisomy 21 (Down syndrome), were maintained in primary culture and their electrical membrane properties were compared with intracellular recording techniques. After 3-4 weeks in culture, trisomic DRG neurons had a higher mean resting potential (+10%), a higher specific membrane resistance (+50%) and higher excitability (+17%), a shorter action potential (-22%), higher maximal rates of depolarization (+39%) and of two phases of repolarization (+20% and +10%) and a lower duration (-42%) of the afterhyperpolarization, than did control DRG neurons (P less than 0.05). The duration of the action potential was 2X greater than in control neurons, when external calcium was elevated from 1.2 to 10 mM. Differences in the electrical parameters like those observed in DRG neurons also were found in cultured spinal cord neurons. These results indicate that trisomy 16 in fetal mice alters passive and active electrical membrane properties in DRG and spinal cord neurons, and suggest that some differences are related to differences in calcium currents.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004314 Down Syndrome A chromosome disorder associated either with an extra CHROMOSOME 21 or an effective TRISOMY for chromosome 21. Clinical manifestations include HYPOTONIA, short stature, BRACHYCEPHALY, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, single transverse palmar crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213) Mongolism,Trisomy 21,47,XX,+21,47,XY,+21,Down Syndrome, Partial Trisomy 21,Down's Syndrome,Partial Trisomy 21 Down Syndrome,Trisomy 21, Meiotic Nondisjunction,Trisomy 21, Mitotic Nondisjunction,Trisomy G,Downs Syndrome,Syndrome, Down,Syndrome, Down's
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic

Related Publications

C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport
December 1988, Brain research,
C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport
February 1988, Brain research,
C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport
July 2024, Journal of neuroscience methods,
C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport
November 1986, Journal of neurophysiology,
C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport
January 1993, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao,
C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport
March 1992, Journal of neurophysiology,
C B Orozco, and S A Smith, and C J Epstein, and S I Rapoport
January 1990, Neuroscience,
Copied contents to your clipboard!