Effects of thyroid deficiency on the vasopressin receptors in the kidney of developing and adult rats. A comparative study of hormonal binding and adenylate cyclase activation. 1987

M Ali, and G Guillon, and M N Balestre, and J Clos

The effects of propylthiouracil (PTU) treatment on renal vasopressin sensitive adenylate cyclase in young and adult rats were studied by measuring the binding of tritiated vasopressin and adenylate cyclase activation by vasopressin in kidney medulla plasma membranes. Thyroxine therapy completely corrected the effects of PTU treatment on the vasopressin-adenylate cyclase system. Thus, the abnormalities observed after a such treatment are directly related to thyroid deficiency and not to toxic effects of PTU. The inability of the kidney to normally concentrate urine in developing and adult animals with induced hypothyroidism was mainly related to the reduction of the number of binding sites without significant changes in the basal and guanylyl-imidodiphosphate (Gpp(NH)p)-stimulated adenylate cyclase activities, the apparent dissociation constant (Kbind) of labeled vasopressin from its specific receptor and the apparent activation constant (Kact) of vasopressin for adenylate cyclase. These results also show that thyroid deficiency has more effect on the ontogenesis of receptors than on their turnover, and demonstrate that a normal antidiuretic response occurs at very low receptor occupancy. Since, on the one hand, the hypothyroidism-induced abnormalities in renal medulla responsiveness to vasopressin were reversible and, on the other, only a permanent therapy consisting of two daily physiological doses of thyroxine from birth to the age of sacrifice fully restored them, the responsiveness of developing kidney to thyroid hormones appears to be fundamentally different from that of the CNS.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011441 Propylthiouracil A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534) 6-Propyl-2-Thiouracil,6 Propyl 2 Thiouracil
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4

Related Publications

M Ali, and G Guillon, and M N Balestre, and J Clos
October 1985, The Journal of clinical investigation,
M Ali, and G Guillon, and M N Balestre, and J Clos
October 1979, Biochimica et biophysica acta,
M Ali, and G Guillon, and M N Balestre, and J Clos
January 1976, Journal of supramolecular structure,
M Ali, and G Guillon, and M N Balestre, and J Clos
March 1976, Molecular and cellular endocrinology,
M Ali, and G Guillon, and M N Balestre, and J Clos
June 1985, Bollettino della Societa italiana di biologia sperimentale,
M Ali, and G Guillon, and M N Balestre, and J Clos
January 1986, Peptides,
M Ali, and G Guillon, and M N Balestre, and J Clos
January 1980, Biochemical pharmacology,
M Ali, and G Guillon, and M N Balestre, and J Clos
October 1982, The Journal of pharmacology and experimental therapeutics,
M Ali, and G Guillon, and M N Balestre, and J Clos
December 1982, European journal of pharmacology,
Copied contents to your clipboard!