Enoyl coenzyme A hydratase 1 protects against high-fat-diet-induced hepatic steatosis and insulin resistance. 2018

Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Metabolic disorders, including obesity, non-alcoholic fatty liver disease (NAFLD), metabolic syndrome and diabetes, are complex and progressive diseases. Enoyl coenzyme A hydratase 1 (Ech1) is an enzyme that participates in mitochondrial fatty acid β-oxidation; however, little is known regarding the significance of Ech1 in the pathogenesis of metabolic disorders. Here, we report that high-fat-diet (HFD)-induced and genetic obesity could increase Ech1 expression in mouse liver. The overexpression of Ech1 using adeno-associated virus (AAV2/8) ameliorated HFD-induced liver lipid accumulation and accompanying liver injury. Additionally, Ech1 overexpression resulted in improved dyslipidemia and insulin resistance in HFD-fed mice. Further, the studies revealed that Ech1 could directly inhibit lipogenesis gene expressions and attenuate the insulin pathway induced by an HFD. Together, our results demonstrate that Ech1 protects against HFD-induced hepatic steatosis and insulin resistance and that its inhibitory effects on lipogenesis and insulin signaling may partly explain its role in metabolic disorders.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D050155 Lipogenesis De novo fat synthesis in the body. This includes the synthetic processes of FATTY ACIDS and subsequent TRIGLYCERIDES in the LIVER and the ADIPOSE TISSUE. Lipogenesis is regulated by numerous factors, including nutritional, hormonal, and genetic elements. Lipogeneses
D050171 Dyslipidemias Abnormalities in the serum levels of LIPIDS, including overproduction or deficiency. Abnormal serum lipid profiles may include high total CHOLESTEROL, high TRIGLYCERIDES, low HIGH DENSITY LIPOPROTEIN CHOLESTEROL, and elevated LOW DENSITY LIPOPROTEIN CHOLESTEROL. Dyslipoproteinemias,Dyslipidemia,Dyslipoproteinemia
D059305 Diet, High-Fat Consumption of excessive DIETARY FATS. Diet, High Fat,Diets, High Fat,Diets, High-Fat,High Fat Diet,High Fat Diets,High-Fat Diet,High-Fat Diets

Related Publications

Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
April 2017, Antioxidants & redox signaling,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
October 2018, Biochimica et biophysica acta. Molecular basis of disease,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
November 2020, International journal of obesity (2005),
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
August 2015, Journal of hepatology,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
April 2023, Diabetologia,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
June 2022, Acta pharmaceutica Sinica. B,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
August 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
April 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
May 2015, Diabetes,
Dandan Huang, and Baoqing Liu, and Kai Huang, and Kun Huang
May 2024, International journal of molecular sciences,
Copied contents to your clipboard!