Regulation of actomyosin ATPase activity by troponin-tropomyosin: effect of the binding of the myosin subfragment 1 (S-1).ATP complex. 1987

L E Greene, and D L Williams, and E Eisenberg

In our model of regulation, the observed lack of cooperativity in the binding of myosin subfragment 1 (S-1) with bound ATP to the troponin-tropomyosin-actin complex (regulated actin) is explained by S-1.ATP having about the same affinity for the conformation of the regulated actin that activates the myosin ATPase activity (turned-on form) and the conformation that does not activate the myosin ATPase activity (turned-off form). This predicts that, in the absence of Ca2+, S-1.ATP should not turn on the regulated actin filament. In the present study, we tested this prediction by using either unmodified S-1 or S-1 chemically modified with N,N'-p-phenylenedimaleimide (pPDM X S-1) so that functionally it acts like S-1.ATP, although it does not hydrolyze ATP. We found that, in the absence of Ca2+, neither S-1.ATP nor pPDM X S-1.ATP significantly turns on the ATPase activity of the regulated complex of actin and S-1 (acto X S-1). In contrast, in the presence of Ca2+, pPDM X S-1.ATP binding almost completely turns on the regulated acto.S-1 ATPase activity. These results can be explained by our original cooperativity model, with pPDM X S-1.ATP binding only approximately equal to 2-fold more strongly to the turned-on form than to the turned-off form of regulated actin. However, our results are not consistent with our alternative model, which predicts that if pPDM X S-1.ATP binds to actin in the absence of Ca2+ but does not turn on the ATPase activity, then it should also not turn on the ATPase activity in the presence of Ca2+.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D000205 Actomyosin A protein complex of actin and MYOSINS occurring in muscle. It is the essential contractile substance of muscle.
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D014335 Tropomyosin A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN. Paramyosin,Miniparamyosin,Paratropomyosin,Tropomyosin Mg,alpha-Tropomyosin,beta-Tropomyosin,gamma-Tropomyosin,Mg, Tropomyosin,alpha Tropomyosin,beta Tropomyosin,gamma Tropomyosin
D014336 Troponin One of the minor protein components of skeletal and cardiac muscles. It functions as the calcium-binding component in a complex with BETA-TROPOMYOSIN; ACTIN; and MYOSIN and confers calcium sensitivity to the cross-linked actin and myosin filaments. Troponin itself is a complex of three regulatory proteins (TROPONIN C; TROPONIN I; and TROPONIN T). Troponin Complex,Troponins

Related Publications

L E Greene, and D L Williams, and E Eisenberg
July 1982, The Journal of biological chemistry,
L E Greene, and D L Williams, and E Eisenberg
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
L E Greene, and D L Williams, and E Eisenberg
March 1982, The Journal of biological chemistry,
L E Greene, and D L Williams, and E Eisenberg
February 1986, Biochemistry,
L E Greene, and D L Williams, and E Eisenberg
April 1987, The Journal of biological chemistry,
L E Greene, and D L Williams, and E Eisenberg
June 1980, Proceedings of the National Academy of Sciences of the United States of America,
L E Greene, and D L Williams, and E Eisenberg
January 1983, Proceedings of the National Academy of Sciences of the United States of America,
L E Greene, and D L Williams, and E Eisenberg
January 1974, Zeitschrift fur Naturforschung. Section C, Biosciences,
Copied contents to your clipboard!