Viscoelastic Properties of Contemporary Bulk-fill Restoratives: A Dynamic-mechanical Analysis. 2018

Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya

This study investigated the viscoelastic properties of contemporary bulk-fill restoratives in distilled water and artificial saliva using dynamic mechanical analysis. The materials evaluated included a conventional composite (Filtek Z350), two bulk-fill composites (Filtek Bulk-fill and Tetric N Ceram), a bulk-fill giomer (Beautifil-Bulk Restorative), and two novel reinforced glass ionomer cements (Zirconomer [ZR] and Equia Forte [EQ]). The glass ionomer materials were also assessed with and without resin coating (Equia Forte Coat). Test specimens 12 × 2 × 2 mm of the various materials were fabricated using customized stainless-steel molds. After light polymerization/initial set, the specimens were removed from the molds, finished, measured, and conditioned in distilled water or artificial saliva at 37°C for seven days. The materials (n=10) were then subjected to dynamic mechanical testing in flexure mode at 37°C and a frequency of 0.1 to 10 Hz. Storage modulus, loss modulus, and loss tangent data were subjected to normality testing and statistical analysis using one-way analysis of variance/Dunnett's test and t-test at a significance level of p < 0.05. Mean storage modulus ranged from 3.16 ± 0.25 to 8.98 ± 0.44 GPa, while mean loss modulus ranged from 0.24 ± 0.03 to 0.65 ± 0.12 GPa for distilled water and artificial saliva. Values for loss tangent ranged from 45.7 ± 7.33 to 134.2 ± 12.36 (10-3). Significant differences in storage/loss modulus and loss tangent were observed between the various bulk-fill restoratives and two conditioning mediums. Storage modulus was significantly improved when EQ and ZR was not coated with resin.

UI MeSH Term Description Entries
D003188 Composite Resins Synthetic resins, containing an inert filler, that are widely used in dentistry. Composite Resin,Resin, Composite,Resins, Composite
D003799 Dental Stress Analysis The description and measurement of the various factors that produce physical stress upon dental restorations, prostheses, or appliances, materials associated with them, or the natural oral structures. Analyses, Dental Stress,Analysis, Dental Stress,Stress Analyses, Dental,Stress Analysis, Dental,Dental Stress Analyses
D004548 Elasticity Resistance and recovery from distortion of shape.
D005899 Glass Ionomer Cements A polymer obtained by reacting polyacrylic acid with a special anion-leachable glass (alumino-silicate). The resulting cement is more durable and tougher than others in that the materials comprising the polymer backbone do not leach out. Glass Ionomer Cement,Glass Polyalkenoate Cement,Polyalkenoate Cement,Polyalkenoate Cements,Glass Polyalkenoate Cements,Glass-Ionomer Cement,Cement, Glass Ionomer,Cement, Glass Polyalkenoate,Cement, Glass-Ionomer,Cement, Polyalkenoate,Cements, Glass Ionomer,Cements, Glass Polyalkenoate,Cements, Glass-Ionomer,Cements, Polyalkenoate,Glass-Ionomer Cements,Ionomer Cement, Glass,Polyalkenoate Cement, Glass
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities
D017438 Bisphenol A-Glycidyl Methacrylate The reaction product of bisphenol A and glycidyl methacrylate that undergoes polymerization when exposed to ultraviolet light or mixed with a catalyst. It is used as a bond implant material and as the resin component of dental sealants and composite restorative materials. Bis-GMA,Bis-GMA Polymer,2-Propenoic acid, 2-methyl-, (1-methylethylidene)bis(4,1-phenyleneoxy(2-hydroxy-3,1-propanediyl)) ester, homopolymer,Adaptic,Bis(Phenol A-Glycidyl Methacrylate),Bis(Phenol A-Glycidyl Methacrylate), Homopolymer,Bis(Phenol A-Glycydyl Methacrylate),Bis-GMA Resin,Bisphenol A-Glycidyl Methacrylate Homopolymer,Bisphenol A-Glycidyl Methacrylate Polymer,Concise Composite Resin,Concise Enamel Bond,Concise Enamel Bond System,Concise Resin,Concise White Sealant,Conclude Composite Resin,Conclude Resin,Delton,Epoxylite-9075,Kerr Pit and Fissure Sealant,Kerr Sealer,Nuva-Seal,Panavia Opaque,Poly(Bis-GMA),Retroplast,Silux,Bis GMA,Bis GMA Polymer,Bis GMA Resin,Bis-GMA Polymers,Bis-GMA Resins,Bisphenol A Glycidyl Methacrylate,Bisphenol A Glycidyl Methacrylate Homopolymer,Bisphenol A Glycidyl Methacrylate Polymer,Bond, Concise Enamel,Composite Resin, Concise,Composite Resin, Conclude,Composite Resins, Concise,Concise Composite Resins,Concise Resins,Enamel Bond, Concise,Epoxylite 9075,Epoxylite9075,Methacrylate, Bisphenol A-Glycidyl,Nuva Seal,NuvaSeal,Opaque, Panavia,Polymer, Bis-GMA,Polymers, Bis-GMA,Resin, Bis-GMA,Resin, Concise,Resin, Concise Composite,Resin, Conclude,Resin, Conclude Composite,Resins, Bis-GMA,Resins, Concise,Resins, Concise Composite

Related Publications

Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
June 2016, Journal of dentistry,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
January 2014, Stomatologiia,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
January 2020, Operative dentistry,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
December 2015, Dental materials : official publication of the Academy of Dental Materials,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
January 2018, Journal of International Society of Preventive & Community Dentistry,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
January 2016, Frontiers in physiology,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
September 2021, Operative dentistry,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
January 2020, Dental materials journal,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
January 2015, Operative dentistry,
Jex Ong, and A U Yap, and J Y Hong, and A H Eweis, and N A Yahya
January 2015, Operative dentistry,
Copied contents to your clipboard!